

Branch & Bound Algorithms for the Traveling Salesman Problem

author

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

A TSP tour has the properties:

- it is a *connected* subgraph of the network
- the degree of every node is 2

The solution of the *Assignment Problem* satisfies the second property, but not always the first.

The solution of the *minimum spanning 1-tree* problem satisfies the first property, but not always the second.

1-Tree

A 1-tree is constructed by adding a single edge to a tree.

Note that a tour is a 1-tree:

Minimize $\sum_{i=1}^n \sum_{j=1}^n d_{ij} X_{ij}$
subject to

$$\left. \begin{array}{l} \sum_{i=1}^n X_{ij} = 1 \quad \forall j=1, \dots, n \\ \sum_{j=1}^n X_{ij} = 1 \quad \forall i=1, \dots, n \end{array} \right\} \text{Assignment constraints}$$

$X \in \mathbf{T}$ = set of all 1-trees

If either the assignment or the 1-tree constraints are relaxed, the resulting problem (which is easy to solve) provides a lower bound on the length of the optimal tour.

Relaxation of 1-tree constraints

Relaxation of Assignment constraints

