Examples

[5] Water Allocation
[as Production Planning
[5] Transportation Problem (random demand)
([-5) 2-Stage Stochastic Programming

EXAMPLE

A water system manager

Water Resources Planning
 Under Uncertainty

 must allocate water from a stream to three users:- municipality
- industrial concern
- agricultural sector
\square
9Dennis Bricker, U. of Iows, 1998

Use	Request	Net Benefit per unit
1. Municipality	2	100
2. Industrial	3	50
3. Agricultural	5	30

Let $X_{i}=$ amount of water allocated to use \#i
The optimal allocation might be found by solving the LP:

Max $100 \mathrm{X}_{1}+50 \mathrm{X}_{2}+30 \mathrm{X}_{3}$ subject to $\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3} \leq \mathrm{Q}$

But the decision must be made before the quantity Q of the available water is known!

$$
\begin{aligned}
& 0 \leq \mathrm{X}_{1} \leq 2 \\
& 0 \leq \mathrm{X}_{2} \leq 3 \\
& 0 \leq \mathrm{X}_{3} \leq 5
\end{aligned}
$$

Max $100 \mathrm{X}_{1}+50 \mathrm{X}_{2}+30 \mathrm{X}_{3}$
 Random variable with known probability distribution

How should the water be
allocated before the quantity avallable is known?

Streamflow Distribution		
\mathbf{i}	$\mathrm{q}_{\mathbf{i}}$	$\mathrm{P}\left\{\mathrm{Q}=\mathrm{q}_{\mathbf{i}}\right\}$
1	4	20%
2	10	60%
3	17	20%

Use	Request	Loss per unit shortfall
1. Municipality	2	250
2. Industrial	3	75
3. Agricultural	5	60

If more water is promised than can be later delivered, then a loss results from the need either to acquire alternative sources
\&/or to reduce consumption.
What is the "optimal" quantity to allocate to each
use, if Q is not yet $t_{\mathbb{K}}$ known?

EXAMPLE

Production Planning with
 Uncertain Resources

Par, Inc., a manufacturer of golf bags, must schedule production for the next quarter.
\because

PRODUCTION TIME/BAG IN EACH DEPARTMENT

product	 Dyeing	Sewing	Finishing	Inspect Package
Standard	$7 / 10 \mathrm{hr}$	$1 / 2 \mathrm{hr}$	1 hr	$1 / 10 \mathrm{hr}$
Deluxe	1 hr	$5 / 6 \mathrm{hr}$	$2 / 3 \mathrm{hr}$	$1 / 4 \mathrm{hr}$

The company can sell as many bags as can be produced at a profit of $\$ 10$ per standard bag and $\$ 9$ per deluxe bag.

$$
\begin{array}{r}
\text { Max } 10 \mathrm{X}_{1}+9 \mathrm{X}_{2} \\
\text { subject to } 7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2} \leq 630 \\
1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2} \leq 600 \\
\mathrm{X}_{1}+2 / 3 \mathrm{X}_{2} \leq 708 \\
1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2} \leq 135 \\
\mathrm{X}_{1} \geq 0, \mathrm{X}_{2} \geq 0
\end{array}
$$

Dept.	Available hrs.
C\&D	630
SEW	600
FIN	708
I\&P	135

Based upon current commitments, the hours available
in each department for the next quarter are computed. However, the firm has submitted bids on two contracts, which if successful would reduce the hours avalable for producing golf bags.

Contract	probability	Production Hours Reqd			
		C \&D	SEW	FIN	I\&P
$\# 1$	50%	50	40	80	10
$\# 2$	40%	30	50	70	15

A production schedule for standard \& deluxe bags must be chosen before learning which contracts, if any, were awarded to the firm. Afterwards, the production schedule may be modified somewhat, but extra costs are incurred in doing so...

For each scenario, we compute the available hours in each department (subtracting the hours used to fill any contracts which are won)

Available hrs.

	scenario			
Dept.	\#0	\#1	\#2	\#3
C\&D	630	580	600	550
SEW	600	560	550	510
FIN	708	628	638	558
I\&P	135	125	120	110

Recourses

- Scheduling overtime in C\&D at $\$ 5 / \mathrm{hr}$ SEW at $\$ 6 / \mathrm{hr}$ FIN at $\$ 8 / \mathrm{hr}$ I\&P at \$4/hr (only 100 hrs OT available in FIN)
- Schedule additional production of standard bags, at a reduced profit of $\$ 8 /$ bag

R

$40-640$ $0 \times \times \times \times \times \times \times$ 04040 -696060
 Stachastic ILIP with Recourse

 $0 x+0 x+0 x$ $1+\infty+\infty+\infty+\infty$ $-\infty-\infty-\infty-\infty-\infty-\infty-\infty$

 $1+8+9+9+4$ $\stackrel{+}{ }+\infty+\odot+\infty+\odot+\infty+\infty$ $\stackrel{+}{+}+\stackrel{+}{+}+\stackrel{+}{+}+\infty+\infty$
 $\otimes+\infty+\infty+\infty<\infty$ $+\infty+8+8+8+8+4$ $\stackrel{+}{4}+\infty+\infty+\infty+\infty+\infty$
 \& $+1+4+4$

$\stackrel{>}{\wedge}$
 4 4θ 人 4θ 人

Linear Constraints

Sequence of Events

- x is selected by the decision-maker
- the random variable b is observed
- the decision-maker must choose y so as to satisfy constraint, i.e.

$$
\mathrm{By}=\mathrm{b}-\mathrm{Ax}
$$

$c x+d y$

Second-Stage Problem

$$
\begin{array}{r}
\phi(\mathrm{x}, \mathrm{~b})=\underset{\text { s.t. } \mathrm{By}=\mathrm{b}-\mathrm{Ax}}{\text { Minimum dy }}
\end{array}
$$

Since b is a random variable, so also is $\phi(x, b)$ for fixed x.
both x\&bare fixed

First-Stage Problem

Minimize the sum of the first-stage cost and the expected cost of the 2nd stage:

Minimize $c x+\mathrm{E}_{6}[\phi(\mathrm{x}, \mathrm{b})]$

$\mathrm{E}_{6}[\phi(\mathrm{x}, \mathrm{b})]$ is the expected cost of the second stage, for fixed x
This is generally a nonlinear, but convex, function of x.

Discrete RHS distribution

Suppose that the right-hand-side vector b is "drawn" from a finite set of possible RHSs $\left\{b^{1}, b^{2}, \ldots . b^{k}\right\}$ with probabilities $p_{1}, p_{2}, \ldots p_{k}$.

Define a second-stage (recourse) vector for each of the possible RHSs: $y^{1}, y^{2}, \ldots y^{k}$
Then the recourses must be selected so that given the first-stage decision x, this system of equations is satisfied:

$$
\left\{\begin{array}{cc}
\mathrm{A} x+B y^{1}= & b^{1} \\
\mathrm{Ax}+\mathrm{B} \mathrm{y}^{2}= & \mathrm{b}^{2} \\
\vdots & \vdots \\
\mathrm{Ax}+\mathrm{B} y^{k}= & b^{k}
\end{array}\right.
$$

©Dennis Bricker, LI of Iowa, 1998

Notice the b/ock-angu/ar structure of the coefficient matrix...

	Question: Could the Dantzig-Ho/fe decomposition technique be used in order to decompose	
Minimize cx $+p_{1} d y^{1}+p_{2} d y^{2}+\ldots+p_{k} d y^{k}$		this prob/em into $s m a / / e r$
subject to	$A x+B y^{1} \quad=b^{1}$	subproblems?
	$A x+B y^{2} \quad=b^{2}$	
	$A x \quad+B y^{3}=b^{3}$	
	$\mathrm{Ax} \quad+\mathrm{By}=\mathrm{b}^{k}$	
	$x \geq 0, y^{1} \geq 0, \ldots, y^{k} \geq 0$	

Dual of the 2-stage stochastic LP problem:

$$
\begin{aligned}
& \text { Maximize } b^{1} \mathbf{u}^{1}+b^{2} \mathbf{u}^{2}+\ldots+b^{k} \mathbf{u}^{k} \\
& \text { subject to } A^{\top} \mathbf{u}^{1}+A^{\top} \mathbf{u}^{2}+\ldots+A^{\top} \mathbf{u}^{k} \leq c \\
& B^{\top} \mathbf{u}^{1} \\
& \begin{array}{llr}
\mathrm{B}^{\top} \mathbf{u}^{2} & & \leq \mathrm{p}_{2} \mathrm{~d} \\
& \ddots & \mathrm{~B}^{\top} \mathbf{u}^{k} \leq \mathbf{p}_{\mathrm{k}} \mathbf{d}
\end{array}
\end{aligned}
$$

a/f ramables unrestrictedin sign
This problem has a structure for which Dantzig-Wolfe decomposition is appropriate!

Dual of the 2-stage stochastic LP problem

$$
\begin{aligned}
& \text { Maximize } b^{1} u^{1}+b^{2} u^{2}+\ldots+b^{k} u^{k} \\
& \text { subject to } A^{\top} \mathbf{u}^{1}+A^{\top} \mathbf{u}^{2}+\ldots+A^{\top} u^{k} \leq c \\
& \qquad \begin{array}{rrr}
B^{\top} \mathbf{u}^{1} & & \leq p_{1} d \\
& B^{\top} u^{2} & \\
& \ddots & p_{2} d
\end{array} \\
& \\
&
\end{aligned}
$$

$$
\text { subject to } A^{\top} u^{1}+A^{\top} u^{2}+\ldots+A^{\top} u^{k} \leq c \neq l i n k i n g \text { constraints }
$$

a// ma/jables w/nesficted i/ sigh

Subproblem for Block \# i

Maximize $\left(b^{i}-\omega A^{\top}\right) \mathbf{u}^{i}-\alpha_{i}$

$$
\text { subject to } \quad B^{\top} u^{i} \leq p_{i} d
$$

where ω is the simplex multiplier vector for the linking constraints, and α_{i} is the simplex multiplier vector for convexity constraint \#i

These subproblems all have the same matrix of constraint coefficients, and the constraint right-handside vectors are all scalar multiples of the same vector d .
קאן

Solution

Water Allocation Problem

Define second-stage (recourse) variables

$$
\begin{aligned}
& Y_{i}=\text { amount of shortfall in water delivered } \\
& \text { to user } \mathbf{i}
\end{aligned}
$$

Max $100 \mathrm{X}_{1}+50 \mathrm{X}_{2}+30 \mathrm{X}_{3}$
 expected pensties tor shorto/
$-E_{Q}\left\{\begin{array}{l}\min 250 Y_{1}+75 Y_{2}+60 Y_{3} \\ \text { s.t. } \\ Y_{1}+Y_{2}+Y_{3} \geq X_{1}+X_{2}+X_{3}-Q \\ 0 \leq Y_{1} \leq X_{1}, 0 \leq Y_{2} \leq X_{2}, 0 \leq Y_{3} \leq X_{3}\end{array}\right\}$ \because

9Dennis Bricker, U. of Iowa, 1998

Define a separate recourse variable for each possible outcome:

$$
\begin{aligned}
& Y_{i}^{j}=\begin{array}{l}
\text { amount of shortfall in water delivered } \\
\text { to user } i \text { if } Q=q_{j}
\end{array} .
\end{aligned}
$$

/n our "deterministic"LP formulation of the problem, then, we must simultaneously select the recourse (i.e., the user who will be denied the promised water) for each of the possible streamflows!

EQUIVALENT DETERMINISTIC LP

Max $100 \mathrm{X}_{1}+50 \mathrm{X}_{2}+30 \mathrm{X}_{3}-0.2\left(250 \mathrm{Y}_{1}^{1}+75 \mathrm{Y}_{2}^{1}+60 \mathrm{Y}_{3}^{1}\right)$
$-0.6\left(250 \mathrm{Y}_{1}^{2}+75 \mathrm{Y}_{2}^{2}+60 \mathrm{Y}_{3}^{2}\right)-0.2\left(250 \mathrm{Y}_{1}^{3}+75 \mathrm{Y}_{2}^{3}+60 \mathrm{Y}_{3}^{3}\right)$
subject to

$$
\left\{\begin{array}{l}
X_{1}+X_{2}+X_{3}-Y_{1}^{1}-Y_{2}^{1}-Y_{3}^{1} \leq 4 \\
X_{1}+X_{2}+X_{3}-Y_{1}^{2}-Y_{2}^{2}-Y_{3}^{2} \leq 10 \\
X_{1}+X_{2}+X_{3}-Y_{1}^{3}-Y_{2}^{3}-Y_{3}^{3} \leq 17 \\
0 \leq Y_{1}^{k} \leq X_{1} \leq 2 \\
0 \leq Y_{2}^{k} \leq X_{2} \leq 3 \\
0 \leq Y_{3}^{k} \leq X_{3} \leq 5
\end{array}\right\} \forall \mathrm{K}=1,2,3
$$

Optimal Solution

Use i	Allocation X_{i}	$\begin{array}{lcr} \mathrm{Q}=4 & 10 & 17 \\ \text { Shortfall in Delivery } \end{array}$		
		Y_{i}^{\prime}	Y_{i}^{2}	Y_{i}^{3}
1 Municipal	2	0	0	0
2 Industrial	3	1	0	0
3 Agricultural	5	5	0	0

Objective value $=100(2)+50(3)+30(5)-0.2[75(1)+60(5)]$

$$
=500-0.2(375)=425
$$

Solution

probability

$\left.$	$0:$ neither bid is
successful	$\quad(1-0.5) \times(1-0.40)=0.30 \right\rvert\,$

Par, Inc.
©Dennis Bricker, L. of Iows, 1998

Possible Outcomes
 ("scenarios")

Stage 1 Variables

$Y^{i}=\#$ standard bags added to next quarter's prod'n plan $\mathrm{T}_{\mathrm{CD}}^{\mathrm{i}}=$ hours overtime in cut\&dye
$\mathrm{T}_{\mathrm{S}}^{\mathrm{i}}$ = hours overtime in sewing
$\mathrm{T}_{\mathrm{F}}^{1}=$ hours overtime in finishing
$\mathrm{T}_{\mathrm{IP}}^{\mathrm{i}}=$ hours overtime in inspect\& pack

Scenario \#O: neither bid is successful

Second-stage problem (X is fixed)

Max $8 \mathrm{Y}_{1}^{0}-5 \mathrm{~T}_{\mathrm{CD}}^{0}-6 \mathrm{~T}_{\mathrm{S}}^{0}-8 \mathrm{~T}_{\mathrm{F}}^{0}-4 \mathrm{~T}_{\mathrm{IP}}^{0}$
subject to $7 / 10 \mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{CD}}^{0} \leq 630-\left[7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}\right]$

$$
1 / 2 \mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{S}}^{0} \leq 600-\left[1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}\right]
$$

$$
\mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{F}}^{0} \leq 708-\left[\mathrm{X}_{1}+2 / 3 \mathrm{X}_{2}\right]
$$

$$
1 / 10 \mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{IP}}^{0} \leq 135-\left[1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}\right]
$$

$$
\mathrm{Y}_{1}^{0} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{0} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{0} \geq 0, \mathrm{~T}_{\mathrm{S}}^{0} \geq 0,100 \geq \mathrm{T}_{\mathrm{F}}^{0} \geq 0, \mathrm{~T}_{\mathrm{IP}}^{0} \geq 0
$$

GDennis Bricker, U. of lowa, 1996

Scenario \#1: only bid \#1 is successful

Second-stage problem (X is fixed)

$$
\begin{aligned}
& \text { Max } 8 \mathrm{Y}_{1}^{1}-5 \mathrm{~T}_{\mathrm{CD}}^{1}-6 \mathrm{~T}_{\mathrm{S}}^{1}-8 \mathrm{~T}_{\mathrm{F}}^{1}-4 \mathrm{~T}_{\mathrm{IP}}^{1} \\
& \text { subject to } 7 / 10 \mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{CD}}^{1} \leq 630-50-\left[7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}\right] \\
& 1 / 2 \mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{S}}^{1} \leq 600-40-\left[1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}\right] \\
& \mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{F}}^{1} \leq 708-80-\left[\mathrm{X}_{1}+2 / 3 \mathrm{X}_{2}\right] \\
& 1 / 10 \mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{IF}}^{1} \leq 135-10-\left[1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}\right] \\
& \mathrm{Y}_{1}^{1} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{1} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{1} \geq 0, \mathrm{~T}_{\mathrm{S}}^{1} \geq 0,100 \geq \mathrm{T}_{\mathrm{F}}^{1} \geq 0, \mathrm{~T}_{\mathrm{IP}}^{1} \geq 0
\end{aligned}
$$

Scenario \#2: only bid \#2 is successful

Second-stage problem (X is fixed)

Max $8 \mathrm{Y}_{1}^{2}-5 \mathrm{~T}_{\mathrm{CD}}^{2}-6 \mathrm{~T}_{\mathrm{S}}^{2}-8 \mathrm{~T}_{\mathrm{F}}^{2}-4 \mathrm{~T}_{\mathrm{IF}}^{2}$

$$
\begin{gathered}
\text { subject to } 7 / 10 \mathrm{Y}_{1}^{2}-\mathrm{T}_{\mathrm{CD}}^{2} \leq 630-30-\left[7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}\right] \\
1 / 2 \mathrm{Y}_{1}^{2}-\mathrm{T}_{S}^{2} \leq 600-50-\left[1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}\right] \\
\mathrm{Y}_{1}^{2}-\mathrm{T}_{\mathrm{F}}^{2} \leq 708-70-\left[\mathrm{X}_{1}+2 / 3 \mathrm{X}_{2}\right] \\
1 / 10 \mathrm{Y}_{1}^{2}-\mathrm{T}_{\mathrm{IP}}^{2} \leq 135-15-\left[1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}\right] \\
\mathrm{Y}_{1}^{2} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{2} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{2} \geq 0, \mathrm{~T}_{\mathrm{S}}^{2} \geq 0,100 \geq \mathrm{T}_{\mathrm{F}}^{2} \geq 0, \mathrm{~T}_{\mathrm{IF}}^{2} \geq 0
\end{gathered}
$$

©Dennis Bricker, LI of Iowa, 1998

Scenario \#3: both bids are successful

Second-stage problem (X is fixed)

Max $8 \mathrm{Y}_{1}^{3}-5 \mathrm{~T}_{\mathrm{CD}}^{3}-6 \mathrm{~T}_{\mathrm{S}}^{3}-8 \mathrm{~T}_{\mathrm{F}}^{3}-4 \mathrm{~T}_{\mathrm{IP}}^{3}$
subject to $7 / 10 \mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{CD}}^{3} \leq 630-50-30-\left[7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}\right]$

$$
\begin{gathered}
1 / 2 \mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{S}}^{3} \leq 600-40-50-\left[1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}\right] \\
\mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{F}}^{3} \leq 708-80-70-\left[\mathrm{X}_{1}+2 / 3 \mathrm{X}_{2}\right] \\
1 / 10 \mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{IP}}^{3} \leq 135-10-15-\left[1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}\right] \\
\mathrm{Y}_{1}^{3} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{3} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{3} \geq 0, \mathrm{~T}_{\mathrm{S}}^{3} \geq 0,100 \geq \mathrm{T}_{\mathrm{F}}^{3} \geq 0, \mathrm{~T}_{\mathrm{IP}}^{3} \geq 0
\end{gathered}
$$

GDennis Bricker, U. of lowa, 1996

Objective

$$
\begin{aligned}
\operatorname{Max} 10 \mathrm{X}_{1}+9 \mathrm{X}_{2} & +0.3\left(8 \mathrm{Y}_{1}^{0}-5 \mathrm{~T}_{\mathrm{CD}}^{0}-6 \mathrm{~T}_{\mathrm{S}}^{0}-8 \mathrm{~T}_{\mathrm{F}}^{0}-4 \mathrm{~T}_{\mathrm{IP}}^{0}\right) \\
& +0.3\left(8 \mathrm{Y}_{1}^{1}-5 \mathrm{~T}_{\mathrm{CD}}^{1}-6 \mathrm{~T}_{\mathrm{S}}^{1}-8 \mathrm{~T}_{\mathrm{F}}^{1}-4 \mathrm{~T}_{\mathrm{IP}}^{1}\right) \\
& +0.3\left(8 \mathrm{Y}_{1}^{2}-5 \mathrm{~T}_{\mathrm{CD}}^{2}-6 \mathrm{~T}_{\mathrm{S}}^{2}-8 \mathrm{~T}_{\mathrm{F}}^{2}-4 \mathrm{~T}_{\mathrm{IP}}^{2}\right) \\
& +0.1\left(8 \mathrm{Y}_{1}^{3}-5 \mathrm{~T}_{\mathrm{CD}}^{3}-6 \mathrm{~T}_{\mathrm{S}}^{3}-8 \mathrm{~T}_{\mathrm{F}}^{3}-4 \mathrm{~T}_{\mathrm{IP}}^{3}\right)
\end{aligned}
$$

Equivalent Deterministic Linear Programming Model

subject to	$7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}+7 / 10 \mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{CD}}^{0} \leq 630$
$\begin{aligned} & \text { scenario } \\ & \text { \#0 } \end{aligned}$	$1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}+1 / 2 \mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{S}}^{0} \leq 600$
	$\mathrm{X}_{1}+2 / 3 \mathrm{X}_{2}+\mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{F}}^{0} \leq 708$
	(1/10 $\mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}+1 / 1 \mathrm{~V}_{1} \mathrm{Y}_{1}^{0}-\mathrm{T}_{\mathrm{IP}}^{0} \leq 135$
scenario \#1	$\left\{\begin{array}{l} 7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}+7 / 10 \mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{CD}}^{1} \leq 580 \\ 1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}+1 / 2 \mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{S}}^{1} \leq 560 \end{array}\right.$
	$\mathrm{X}_{1}+2 / 3 \mathrm{x}_{2}+\mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{F}}^{1} \leq 628$
	$1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}+1 / 10 \mathrm{Y}_{1}^{1}-\mathrm{T}_{\mathrm{IP}}^{1} \leq 12$

©Dennis Bricker, LI of Iowa, 1998

$$
\begin{aligned}
& \begin{array}{r}
\text { scenario } \\
\text { \#2 }
\end{array}\left\{\begin{array}{r}
7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}+7 / 10 \mathrm{Y}_{1}^{2}-\mathrm{T}_{\mathrm{CD}}^{2} \leq 600 \\
1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}+1 / 2 \mathrm{Y}_{1}^{2}-\mathrm{T}_{\mathrm{S}}^{2} \leq 550 \\
\mathrm{X}_{1}+2 / 6 \mathrm{X}_{2}+\mathrm{Y}_{1}^{2}-\mathrm{T}_{\mathrm{F}}^{2} \leq 638 \\
1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}+1 / 10 \mathrm{Y}_{1}^{2}-\mathrm{T}_{\mathrm{IF}}^{2} \leq 120 \\
\mathrm{~T}_{\mathrm{F}}^{2} \leq 100
\end{array}\right. \\
& \begin{array}{r}
\text { scenario } \\
\text { \#3 }
\end{array}\left\{\begin{array}{r}
7 / 10 \mathrm{X}_{1}+\mathrm{X}_{2}+7 / 10 \mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{CD}}^{3} \leq 550 \\
1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2}+1 / 2 \mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{S}}^{3} \leq 510 \\
\mathrm{X}_{1}+2 / 3 \mathrm{X}_{2}+\mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{F}}^{3} \leq 558 \\
1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2}+1 / 10 \mathrm{Y}_{1}^{3}-\mathrm{T}_{\mathrm{IP}}^{3} \leq 110 \\
\mathrm{~T}_{\mathrm{F}}^{2} \leq 100
\end{array}\right. \\
& \mathrm{X}_{1} \geq 0, \mathrm{X}_{2} \geq 0, \mathrm{Y}_{1}^{\mathrm{i}} \geq 0, \mathrm{~T}_{\mathrm{CD}}^{\mathrm{i}} \geq 0, \\
& \text { ©Dennis Bricker, L. of Iowa, } 1998 \\
& \mathrm{~T}_{\mathrm{CD}}^{\mathrm{i}} \geq 0, \mathrm{~T}_{\mathrm{S}}^{\mathrm{i}} \geq 0, \mathrm{~T}_{\mathrm{F}}^{\mathrm{i}} \geq 0, \mathrm{~T}_{\mathrm{IF}}^{\dot{1}} \geq 0 \\
& i=0,1,2,3
\end{aligned}
$$

