

References

Higle, J. L. and S. Sen (1991). "Stochastic decomposition: An algorithm for two-stage linear programs with recourse." *Mathematics of Operations Research* **16**(3): 650-669.

Higle, J. L. and S. Sen (1996). *Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming*. Dordrecht, Kluwer Academic Publishers.

Consider the **2-stage stochastic LP**:

Minimize
$$z = cx + E\left[\min q(\omega)y(\omega)\right]$$

subject to

$$Ax = b$$

$$T(\omega)x + Wy(\omega) = h(\omega),$$

$$x \ge 0, y(\omega) \ge 0$$

where

$$x =$$
first-stage decision

and

 $y(\omega)$ = second-stage decision *after* random event ω is observed

where $y(\omega)$ must satisfy the *second-stage constraints*

 $T(\omega)x + Wy(\omega) = h(\omega),$

 $q(\omega), T(\omega)$ &/or $h(\omega)$ being continuous random variables.

Consider, for example, the case in which only h is random. A possible computational approach:

• *discretize* the range of each right-hand-side $h_i(\omega)$

 use Benders' decomposition (i.e., the "L-shaped Method") to solve the approximate problem

If the number of right-hand-sides (m_2) and/or

the number of discrete values approximating each right-handside are large, the number of scenarios is so large as to make this computationally infeasible.

For example, if there are $m_2=10$ constraints, and only 10 discrete values are used for each right-hand-side, the number of scenarios is 10^{10} ! The **Stochastic Decomposition** (SD) method of Higle & Sen is based upon (the *uni-cut* version of) Benders' decomposition, but

- uses only a *finite sample* of the random outcomes
- solves most of the second-stage problems only *approximately*

For both these reasons, therefore, it is an *approximation* scheme.

Stochastic Decomposition Algorithm of Higle & Sen

Step 0. *a*. Determine a *lower* bound *L* on the optimal value.

b. Set iteration counter *t*=0.

c. Initialize $\Lambda = \emptyset$ which will store the dual extreme points that are generated during the computations.

Step 1. Increment the iteration counter $t \leftarrow t+1$.

Solve the current Benders' *Master Problem*:

Maximize $cx + \theta$ subject to Ax = b, $\theta \ge \alpha^{s} x + \beta^{s}$, s = 1, 2, ...t $x \ge 0$

to obtain x^t

Step 2. Generate a sample ω^t (of size 1).

Stochastic Decomposition

Step 3. Solve (optimally) the second-stage **subproblem** problem for the current x^t and ω^t :

 $\begin{array}{ll} Min \ q(\omega)y(\omega) \\ {\rm s.t.} \ Wy(\omega) = \ h(\omega) - T(\omega)x^t \\ y(\omega) \geq 0 \\ \\ {\rm or \ its \ dual \ LP,} \\ & Max \ \lambda[h(\omega) - T(\omega)x^t] \\ {\rm s.t.} \ \lambda W \leq q(\omega) \\ \\ {\rm to \ obtain \ the \ dual \ solution \ \lambda_t^i, \ which, \ if \ not \ found \ previously,} \end{array}$

is added to the set Λ .

Step 4. Using the current x^t,

for all *previously-generated* scenarios ω^s , s = 1, ...t-1, *approximately* solve the second stage *dual* subproblem, restricting the search to dual extreme points Λ previously computed:

$$\underset{\lambda \in \Lambda}{Max} \left[h(\omega^{s}) - T(\omega^{s}) x^{t} \right] \lambda$$

to obtain λ_{s}^{t} .

Note that this gives an **under**-estimate of the optimal cost for this scenario, since the maximization is over a **subset** of all dual extreme points!

Step 5. Generate the *new* optimality cut, to be added to the Master Problem:

$$\theta \geq \frac{1}{t} \sum_{s=1}^{t} \lambda_s^t \left(h\left(\omega^s\right) - T\left(\omega^s\right) x \right) \equiv \alpha_t^t + \beta_t^t x$$

Step 6. Update each of the *old* optimality cuts, (s=1,2,...t-1) by replacing

$$\theta \ge a_s^{t-1} + \beta_s^{t-1} x$$

with

$$\theta \ge \frac{t-1}{t} \left(\alpha_s^{t-1} + \beta_s^{t-1} x \right) + \frac{1}{t} L$$

and return to **Step 1**.

Updating the Optimality Cuts

- The effect of updating the old optimality cuts in step 6 is to "fade out" the cuts as more information becomes available.
- The lower bound *L* is often zero, or it may be an estimate of the expected value with perfect information, computed using a sample of random outcomes.

Convergence Properties:

Let $\{x^t\}_{t=1}^{\infty}$ be the sequence of solutions of the Master Problems. Then there exists a **subsequence**, $\{x^{t_n}\} \subseteq \{x^t\}$ such that every limit point of $\{x^{t_n}\}$ solves the stochastic programming problem with probability 1. One difficulty in the basic method is that convergence to an optimum may occur only on a *subsequence*. For this reason, Higle & Sen suggest retaining an *incumbent* solution.

This incumbent solution is updated whenever there is a "sufficient" decrease in cost compared to the current incumbent.

Furthermore, in **step 6**, no update is performed for the cut generated in the iteration at which the current incumbent was found.

Termination

In practice, the SD algorithm is terminated if

- the improvement in the objective is small,
- no new dual extreme points are found, and
- the incumbent has not changed

for a specified number of iterations,

EXAMPLE: Randomly-generated problem

Dimensions:

- n₁ = # first-stage variables = 4
- m₁ = # first-stage constraints = 3
- n₂ = # second-stage variables = 12 (including 2 "simple recourse" variables per constraint)
- m₂ = # second-stage constraints = 4

First-stage data:
 A,B=
 ⁻² 1 8 0 > 14
 3 -3 9 7 > 32
 1 1 1 1 < 16
 i variable cost
 1 x[1] 5
 2 x[2] 1
 3 x[3] 7
 4 x[4] 2
Objective: Minimize</pre>

Second-stage data

(Only the right-hand-side vector is random!)

Right-hand-sides in second stage =

i	mean	std dev
1	-13	1.4
2	-7	0.6
3	11	0.5
4	24	1.9

Sec	cond-stage	e Costs:
i	variable	q
1	Y[1]	10
2	Y[2]	10
3	Y[3]	10
4	Y[4]	7
5	Surplus1	99
6	Surplus2	99
7	Surplus3	99
8	Surplus4	99
9	Short1	99
10	Short2	99
11	Short3	99
12	Short4	99

Technology matrix T

(coefficients of X in 2nd stage) = -4 0 -3 -1 -1 5 -4 -4 2 -2 4 0 4 -1 5 1

Technology matrix W

(coe	ffi	cie	ents	5 (эf	Υ	ir	ı 2r	nd s	stag	ge)	=
1	-1	-2	5	1	0	0	0	-1	0	0	0	
0	-3	5	-1	0	1	0	0	0	-1	0	0	
-1	0	2	2	0	0	1	0	0	0	-1	0	
1	2	1	2	0	0	0	1	0	0	0	-1	

Stochastic Decomposition

Solving the Certainty-Equivalent Problem

Found by solving certainty equivalent problem, i.e., replacing all random parameters by their expected values.

Total objective function: 46.1403 Stage One: nonzero variables:

i	variable	value
1	X[1]	2.85221
2	X[2]	2.93628
3	X[3]	2.09602
4	X[4]	2.26327
б	surplus_2	2.45487
7	slack_3	5.85221

Second Stage: nonzero variables

i	variable	value
4	Y[4]	1.39204

Stochastic Decomposition Algorithm

Iteration #1 Trial X for primal subproblems (#1) is Variable Value i 2.85221 1 X[1] (found by solving problem with expected values of 2 X[2] 2.93628 *right-hand-sides*) X[3] 2.09602 3 4 x[4] 2.26327 Solve subproblem with new trial x (#1) : Primal Subproblem Result: nonzero elements of X (#1):

> <u>i</u> X[i] 1 2.85221 2 2.93628 3 2.09602 4 2.26327

 $RHS = -12.4758 - 8.23344 \ 10.544 \ 24.9054 \qquad (first scenario)$

Second-stage cost: 78.4487 Optimal dual vector: 48.2273 -85.4091 -60.7727 -99 Newly-generated optimality cut at iteration 1

Aggregate cut: <u>beta X[1] X[2] X[3] X[4]</u> <u>-3004.89 625.045 206.5 541.136 -194.409</u>

Primal subproblems summary First stage cost: 36.396 Second stage costs: <u>s Lambda# cost</u> 1 1 78.4487

Average second stage cost: 78.4487 Total: 114.845 Solution of Master Problem

X= 2.85221 2.93628 2.09602 2.26327

First-stage cost= 40.75Estimated second-stage cost Q(X) = -4828.23Total (estimated) expected value: -4787.48 Iteration #2

Trial X for primal subproblems (#2) is

i	Variable	Value
1	X[1]	0.00
2	X[2]	0.00
3	X[3]	1.75
4	X[4]	14.25

(found by previous master problem)

```
Solve subproblem with new trial x (#2) :
Primal Subproblem Result:
```

RHS = -15.0969 -6.55505 11.2261 21.3609 (second scenario)

Second-stage cost: 4060.6 Optimal dual vector: 69.7714 65.4 -39.2286 -99

Solve subproblem with incumbent solution (#1) :

Primal Subproblem Result:

	i	X[i]			
-	1	2.85221			
	2	2.93628			
	3	2.09602			
	4	2.26327			
RHS	5 =	$^{-}15.0969$	-6.55505	11.2261	21.3609

Second-stage cost: 289.983 Optimal dual vector: ⁻2.34783 ⁻18.7391 99 ⁻99

Newly-generated optimality cut at iteration 2 <u>si beta x[1] x[2] 3] x[4]</u> 1 2 $^{-1}238.2$ 169.87 192.696 17 21.6957 2 2 $^{-8}45.065$ 169.87 192.696 17 21.6957 s is scenario #, i is dual solution #, beta is constant

Aggregate cut:

beta X[1] X[2] 3] X[4] -1041.63 169.87 192.696 17 21.6957

Primal subproblems summary First stage cost: 40.75 Second stage costs: <u>s Lambda# cost</u> 1 2 ⁻899.283 2 2 289.983 Average second stage cost: ⁻304.65 Total: ⁻263.9 Solution of Master Problem

X= 0 0 1.75 14.25
First-stage cost: 24.8889
Estimated second-stage cost Q(X) = -981.186
Total (estimated) expected value: -956.298

Iteration #3

Trial X for primal subproblems (#3) is Variable Value i 3 3.55556 (found by Master Problem) X[3] Solve subproblem with new trial x (#3): Primal Subproblem Result: RHS = -11.7763 - 6.8984 11.2903 25.526 (third scenario) Second-stage cost: 376.236 Optimal dual vector: 76.2917 13.625 99 12.7083 Solve subproblem with incumbent solution (#2) : Primal Subproblem Result: nonzero elements of X (#2): i X[i] 1 75 4 14 25 RHS = -11.7763 -6.8984 11.2903 25.526 Second-stage cost: 3854.96 Optimal dual vector: 69.7714 65.4 -39.2286 -99

Newly-generated optimality cut at iteration 3

			S	i	beta	x[1]	x[2]	x[3]	x[4]
		_	1	3	$^{-}4288.18$	818.943	$^{-}504.457$	1122.83	430.371
			2	3	$^{-}4037.14$	818.943	$^{-}504.457$	1122.83	430.371
			3	3	$^{-}4242.78$	818.943	$^{-}504.457$	1122.83	430.371
S	is	sce	ena	ri	o #, i is	dual so	lution #,	beta is	constant

Aggregate cut:

beta	X[1]	X[2]	X[3]	X[4]	
-4189.37	818.943	$^{-}504.457$	1122.83	430.371	

Primal subproblems summary
First stage cost: 24.8889
Second stage costs:
<u>s Lambda# cost</u>
1 3 -44.8642
2 3 ⁻ 295.9024
3 3 3854.9594
Average second stage cost: 1171.4
Total: 1196.29

That is, the 3^{rd} dual solution in the list was optimal for all three scenarios.

Solution of Master Problem

```
X= 0 0 3.55556 0
First-stage cost: 18.906
Estimated second-stage cost Q(X) = -966.468
Total (estimated) expected value: -947.562
```

Iteration #4

Trial X for primal subproblems (#4) is <u>i Variable Value</u> 3 X[3] 2.20457 (found by Master Problem) 4 X[4] 1.73698

Solve subproblem with new trial x (#4) : Primal Subproblem Result:

RHS = -14.1861 -7.00585 10.8897 24.0418 (fourth scenario)

Second-stage cost: 216.109 Optimal dual vector: 76.2917 13.625 -99 -12.7083

Solve subproblem with incumbent solution (#2) : Primal Subproblem Result:

i	X[i]
3	1.75
4	14.25

```
RHS = -14.1861 -7.00585 10.8897 24.0418
Second-stage cost: 3842.45
Optimal dual vector: 69.7714 65.4 -39.2286 -99
```

Newly-generated optimality cut at iteration 4

<u>s i beta x[1] x[2] x[3] x[4]</u> 1 3 -4288.18 818.943 -504.457 1122.83 430.371 2 2 -845.065 169.87 192.696 17 21.6957 3 3 -4242.78 818.943 -504.457 1122.83 430.371 4 3 -4255.29 818.943 -504.457 1122.83 430.371 s is scenario #, i is dual solution #, beta is constant

Aggregate cut:

beta	X[1]	X[2]	X[3]	X[4]
-3407.83	656.675	-330.169	846.371	328.202

Primal subproblems summary

First stage cost: 18.906 Second stage costs:

	s L	ambda#	CO	ST	
	1	3	-1019.	882	
	2	2	⁻ 769.	903	
	3	3	-1065.	280	
	4	3	3842.	451	
Av	verage	e second	stage	cost:	246.846
Total:	265.7	52			

Solution of Master Problem

X= 0 0 2.20457 1.73698
First-stage cost: 17.0044
Estimated second-stage cost Q(X) = -944.114
Total (estimated) expected value: -927.11

Output for 200 iterations

Subproblems were solved approximately, except for most recent x and the incumbent!

Stochastic Decomposition

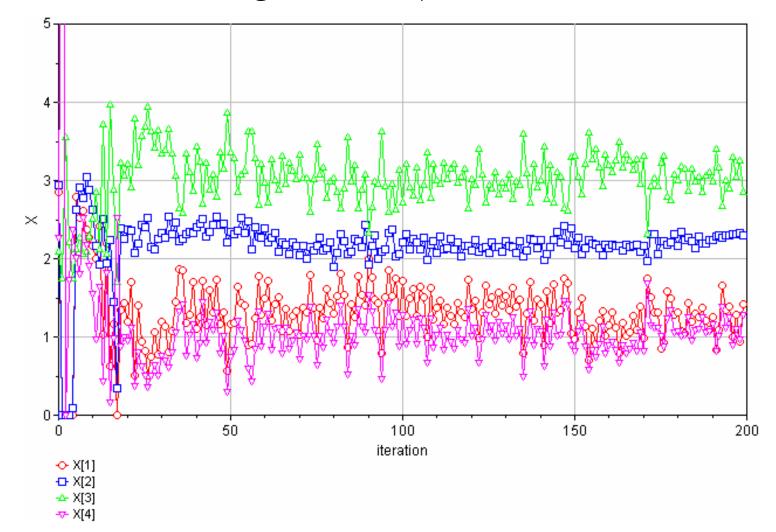
Randomly-generated SLPwR problem (seed= 17853) Random number seed used in computation: 17977

Method: Subproblems solved approximately Tolerance for distinguishing first-stage solutions X: 1.0E⁻3

iterations (= # right-hand-sides sampled): 200
second-stage problems solved: 399

first-stage solutions generated: 200
Best solution found is #189 with estimated cost 71.3121
12 second-stage problems were solved using this X

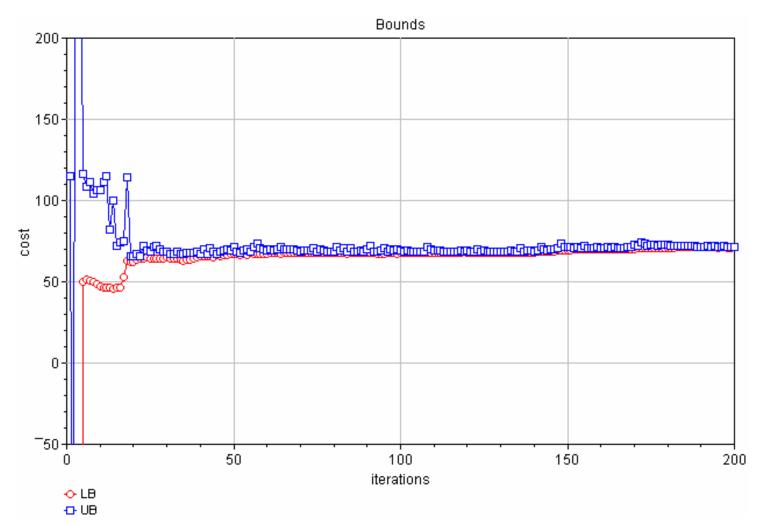
second-stage dual solutions generated: 6



Values of first-stage variables (solutions of Master Problem):

"Lower" and "Upper" Bounds

(found by Master & approximate Subproblems):



The Incumbent Solution

Evaluation of trial solution # 189

i 	variable	X[i]
1	X[1]	1.21096
2	X[2]	2.18995
3	X[3]	3.05608
4	X[4]	1.06174

Three different methods are used to estimate the expected cost of this solution:

Evaluation by:

- Use cuts
- Use recorded dual solutions (i.e., solve subproblems with dual variables restricted to the identified dual extreme points)
- Use recorded Q values (i.e., use actual optimal subproblem solutions computed with this first-stage solution)

1. Using optimality cuts as approximation of expected second-stage cost.

First stage objective:	31.76
Expected second stage objective:	39.84
Total:	71.60

2. Using expected second-stage costs approximated by restriction to 6 recorded dual solutions.

First stage objective:	31.76
Expected second stage objective:	39.65
Total:	71.41

3. Using 12 evaluations of second-stage costs.

First stage objective:31.76Expected second stage objective:33.47Total:65.23

Suppose that we had expended the extra effort to solve the subproblems optimally for every scenario (rather than only the most recently-generated scenario):

```
Random number seed used in computation: 19138
Method: Subproblems solved exactly
Tolerance for distinguishing first-stage solutions X: 1.0E<sup>-3</sup>
# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 20299
# first-stage solutions generated: 200
Best solution found is #111 with estimated cost 66.6435
200 second-stage problems were solved using this X
# second-stage dual solutions generated: 10
```

Compared to 6 dual solutions found previously! But over fifty times the number of subproblems were solved, a substantial increase in effort!