For Problems with Continuous Random Outcomes

References

Higle, J. L. and S. Sen (1991). "Stochastic decomposition: An algorithm for two-stage linear programs with recourse." Mathematics of Operations Research 16(3): 650-669.

Higle, J. L. and S. Sen (1996). Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming. Dordrecht, Kluwer Academic Publishers.

Consider the 2-stage stochastic LP:

$$
\text { Minimize } z=c x+E[\min q(\omega) y(\omega)]
$$

subject to

$$
\begin{gathered}
A x=b \\
T(\omega) x+W y(\omega)=h(\omega), \\
x \geq 0, y(\omega) \geq 0
\end{gathered}
$$

where

$$
x=\text { first-stage decision }
$$

and
$y(\omega)=$ second-stage decision after random event ω is observed
where $y(\omega)$ must satisfy the second-stage constraints

$$
T(\omega) x+W y(\omega)=h(\omega)
$$

$q(\omega), T(\omega) \& /$ or $h(\omega)$ being continuous random variables.

Consider, for example, the case in which only h is random.
A possible computational approach:

- discretize the range of each right-hand-side $h_{i}(\omega)$
- use Benders' decomposition (i.e., the "L-shaped Method") to solve the approximate problem

If the number of right-hand-sides (m_{2}) and/or the number of discrete values approximating each right-handside are large, the number of scenarios is so large as to make this computationally infeasible.

For example, if there are $m_{2}=10$ constraints, and only 10 discrete values are used for each right-hand-side, the number of scenarios is 10^{10} !

The Stochastic Decomposition (SD) method of Higle \& Sen is based upon (the uni-cut version of) Benders' decomposition, but

- uses only a finite sample of the random outcomes
- solves most of the second-stage problems only approximately

For both these reasons, therefore, it is an approximation scheme.

Stochastic Decomposition Algorithm of Higle \& Sen

Step 0. a. Determine a lower bound L on the optimal value.
b. Set iteration counter $t=0$.
c. Initialize $\Lambda=\varnothing$ which will store the dual extreme points that are generated during the computations.

Step 1. Increment the iteration counter $t \leftarrow t+1$.
Solve the current Benders' Master Problem:

$$
\begin{aligned}
& \text { Maximize } \quad c x+\theta \\
& \text { subject to } A x=b, \\
& \quad \theta \geq \alpha^{s} x+\beta^{s}, \quad s=1,2, \ldots t
\end{aligned}
$$

$$
x \geq 0
$$

to obtain x^{t}
Step 2. Generate a sample ω^{t} (of size 1).

Step 3. Solve (optimally) the second-stage subproblem problem for the current x^{t} and ω^{t} :
$\operatorname{Min} q(\omega) y(\omega)$

$$
\begin{aligned}
& \text { s.t. } W y(\omega)=h(\omega)-T(\omega) x^{t} \\
& y(\omega) \geq 0
\end{aligned}
$$

or its dual LP,

$$
\begin{aligned}
& \operatorname{Max} \quad \lambda\left[h(\omega)-T(\omega) x^{t}\right] \\
& \text { s.t. } \lambda W \leq q(\omega)
\end{aligned}
$$

to obtain the dual solution λ_{t}^{t}, which, if not found previously, is added to the set Λ.

Step 4. Using the current x^{t},
for all previously-generated scenarios $\omega^{s}, s=1, \ldots t-1$, approximately solve the second stage dual subproblem, restricting the search to dual extreme points Λ previously computed:

$$
\operatorname{Max}_{\lambda \in \Lambda}\left[\mathrm{h}\left(\omega^{\mathrm{s}}\right)-T\left(\omega^{s}\right) x^{t}\right] \lambda
$$

to obtain λ_{s}^{t}.

Note that this gives an under-estimate of the optimal cost for this scenario, since the maximization is over a subset of all dual extreme points!

Step 5. Generate the new optimality cut, to be added to the Master Problem:

$$
\theta \geq \frac{1}{t} \sum_{s=1}^{t} \lambda_{s}^{t}\left(h\left(\omega^{s}\right)-T\left(\omega^{s}\right) x\right) \equiv \alpha_{t}^{t}+\beta_{t}^{t} x
$$

Step 6. Update each of the old optimality cuts, $(s=1,2, \ldots t-1)$ by replacing

$$
\theta \geq a_{s}^{t-1}+\beta_{s}^{t-1} x
$$

with

$$
\theta \geq \frac{t-1}{t}\left(\alpha_{s}^{t-1}+\beta_{s}^{t-1} x\right)+\frac{1}{t} L
$$

and return to Step 1.

Updating the Optimality Cuts

- The effect of updating the old optimality cuts in step 6 is to "fade out" the cuts as more information becomes available.
- The lower bound \boldsymbol{L} is often zero, or it may be an estimate of the expected value with perfect information, computed using a sample of random outcomes.

Convergence Properties:

Let $\left\{x^{t}\right\}_{t=1}^{\infty}$ be the sequence of solutions of the Master Problems.
Then there exists a subsequence, $\left\{x^{t_{n}}\right\} \subseteq\left\{x^{t}\right\}$ such that every limit point of $\left\{x^{t_{n}}\right\}$ solves the stochastic programming problem with probability 1.

Incumbent Solution

One difficulty in the basic method is that convergence to an optimum may occur only on a subsequence. For this reason, Higle \& Sen suggest retaining an incumbent solution.

This incumbent solution is updated whenever there is a "sufficient" decrease in cost compared to the current incumbent.

Furthermore, in step 6, no update is performed for the cut generated in the iteration at which the current incumbent was found.

Termination

In practice, the SD algorithm is terminated if

- the improvement in the objective is small,
- no new dual extreme points are found, and
- the incumbent has not changed
for a specified number of iterations,

EXAMPLE: Randomly-generated problem

Dimensions:

- $\mathrm{n}_{1}=\#$ first-stage variables $=4$
- $\mathrm{m}_{1}=$ \# first-stage constraints $=3$
- $\mathrm{n}_{2}=\#$ second-stage variables $=12$ (including 2 "simple recourse" variables per constraint)
- $\mathrm{m}_{2}=\#$ second-stage constraints $=4$


```
Second-stage Costs:
i variable q
2 Y[2] 10
    3 Y[3] 10
    4 Y[4] 7
    5 Surplus1 99
    6 Surplus2 99
    7 Surplus3 99
    8 Surplus4 99
    9 Short1 99
10 Short2 99
11 Short3 99
12 Short4 99
```


Technology matrix T

(coefficients of X in 2 nd stage) $=$
$-4 \quad 0 \quad-3-1$
$\begin{array}{llll}-1 & 5 & -4 & -4\end{array}$
$2-240$
$4^{-1} \quad 5 \quad 1$

Technology matrix W

| (coefficients | of | Y | in | 2nd | stage | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | -1 | -2 | 5 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
| 0 | -3 | 5 | -1 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 0 |
| -1 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 0 |
| 1 | 2 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |

Solving the Certainty-Equivalent Problem

Found by solving certainty equivalent problem, i.e., replacing all random parameters by their expected values.

Total objective function: 46.1403
Stage One: nonzero variables:

i	variable	value
1	X[1]	2.85221
2	X[2]	2.93628
3	X[3]	2.09602
4	X[4]	2.26327
6	surplus_2	2.45487
7	slack_3	5.85221

Second Stage: nonzero variables

$$
\begin{array}{lll}
\text { i } & \text { variable } & \text { value } \\
\hline 4 & \text { Y[4] } & 1.39204
\end{array}
$$

Stochastic Decomposition Algorithm

```
                                    Iteration #1
Trial X for primal subproblems (#1) is
\begin{tabular}{llr} 
i & Variable & Value \\
\hline 1 & X[1] & 2.85221
\end{tabular}
        2 X[2] 2.93628
        X[3] 2.09602
        4 X[4] 2.26327
                                    (found by solving problem
                    with expected values of
                    right-hand-sides)
Solve subproblem with new trial x (#1) :
Primal Subproblem Result: nonzero elements of X (#1):
        i X[i]
        2 2.93628
        3 2.09602
        4 2.26327
RHS = -12.4758 - 8.23344 10.544 24.9054 (first scenario)
Second-stage cost: 78.4487
Optimal dual vector: 48.2273 -85.4091 -60.7727 -99
```

Newly-generated optimality cut at iteration 1

$$
\begin{array}{ccccccc}
\text { s i } & \text { beta } & x[1] & x[2] & x[3] & x[4] \\
\hline 1 & 1 & -3004.89 & 625.045 & 206.5 & 541.136 & -194.409
\end{array}
$$

s is scenario \#, i is dual solution \#, beta is constant

Aggregate cut:

$$
\begin{array}{ccccc}
\text { beta } & \mathrm{X}[1] & \mathrm{X}[2] & \mathrm{X}[3] & \mathrm{X}[4] \\
\hline-3004.89 & 625.045 & 206.5 & 541.136 & -194.409
\end{array}
$$

Primal subproblems summary
First stage cost: 36.396
Second stage costs:

s	Lambda\#	cost
1	1	78.4487

Average second stage cost: 78.4487
Total: 114.845

Solution of Master Problem

$$
X=2.852212 .93628 \quad 2.09602 \quad 2.26327
$$

First-stage cost $=40.75$
Estimated second-stage cost $Q(X)=-4828.23$
Total (estimated) expected value: ${ }^{-4787.48}$

```
                                    Iteration #2
Trial X for primal subproblems (#2) is
\begin{tabular}{llr} 
i & Variable & Value \\
\hline 1 & X[1] & 0.00
\end{tabular}
        2 X[2] 0.00
        3 X[3] 1.75
        4 X[4] 14.25
(found by previous master problem)
Solve subproblem with new trial x (#2) :
    Primal Subproblem Result:
    RHS = -15.0969 - - . 55505 11.2261 21.3609 (second scenario)
    Second-stage cost: 4060.6
    Optimal dual vector: 69.7714 65.4 -39.2286-99
Solve subproblem with incumbent solution (#1) :
    Primal Subproblem Result:
        i X[i]
        2 2.93628
        3 2.09602
        4.26327
        RHS = -15.0969 - 6.55505 11.2261 21.3609
```

```
    Second-stage cost: 289.983
    Optimal dual vector: -2.34783 -18.7391 99 -99
```

Newly-generated optimality cut at iteration 2

s i	beta	$x[1]$	$x[2]$	$3]$	$x[4]$	
1	2	-1238.2	169.87	192.696	17	21.6957

s is scenario \#, i is dual solution \#, beta is constant
Aggregate cut:

beta	$\mathrm{X}[1]$	$\mathrm{X}[2]$	3]	$\mathrm{X}[4]$
-1041.63	169.87	192.696	17	21.6957

Primal subproblems summary
First stage cost: 40.75
Second stage costs:

s	Lambda\#	cost
1	2	-899.283
2	2	289.983

Average second stage cost: -304.65
Total: - 263.9

Solution of Master Problem

$\mathrm{X}=0 \quad 0 \quad 1.7514 .25$
First-stage cost: 24.8889
Estimated second-stage cost $\mathrm{Q}(\mathrm{X})=-981.186$
Total (estimated) expected value: - 956.298

Iteration \#3

```
    Trial X for primal subproblems (#3) is
\begin{tabular}{llr}
\(i\) & Variable & Value
\end{tabular}\(\quad\) (found by Master Problem)
Solve subproblem with new trial x (#3) :
Primal Subproblem Result:
    RHS = - 11.7763 - 6.8984 11.2903 25.526 (third scenario)
    Second-stage cost: 376.236
    Optimal dual vector: -}76.2917 13.625 -99 -12.7083
Solve subproblem with incumbent solution (#2) :
Primal Subproblem Result:
    nonzero elements of X (#2):
        i X[i]
        4 14.25
    RHS = -11.7763 -6.8984 11.2903 25.526
    Second-stage cost: 3854.96
    Optimal dual vector: 69.7714 65.4 -39.2286 -99
```

```
Newly-generated optimality cut at iteration 3
    s i ccceta c[1] 
    2 3-4037.14 818.943-504.457 1122.83 430.371
    3 3-4242.78 818.943-504.457 1122.83 430.371
s is scenario #, i is dual solution #, beta is constant
```

Aggregate cut:

beta	$\mathrm{X}[1]$	$\mathrm{X}[2]$	$\mathrm{X}[3]$	$\mathrm{X}[4]$
-4189.37	818.943	-504.457	1122.83	430.371

Primal subproblems summary
First stage cost: 24.8889
Second stage costs:

s	Lambda\#	cost
1	3	-44.8642
2	3	-295.9024
3	3	3854.9594

 Average second stage cost: 1171.4
 Total: 1196.29
 That is, the $3^{r d}$ dual solution in the list was optimal for all three scenarios.

Solution of Master Problem

```
X= 0 0 3.55556 0
First-stage cost: 18.906
Estimated second-stage cost Q(X) = -966.468
Total (estimated) expected value: -947.562
```

```
Trial X for primal subproblems (#4) is
\begin{tabular}{lll}
\(i\) & Variable Value \\
\hline 3 X[3] \(\quad 2.20457\) & (found by Master Problem)
\end{tabular} \(4 \mathrm{X}[4] \quad 1.73698\)
```

Solve subproblem with new trial x (\#4) :
Primal Subproblem Result:

```
RHS = - 14.1861 -}7.00585 10.8897 24.0418 (fourth scenario)
```

Second-stage cost: 216.109
Optimal dual vector: ${ }^{-76.2917} 13.625$-99 - 12.7083
Solve subproblem with incumbent solution (\#2) :
Primal Subproblem Result:

$$
\begin{aligned}
& \begin{array}{rr}
i & \mathrm{X}[\mathrm{i}] \\
\hline 3 & 1.75 \\
4 & 14.25
\end{array} \\
& \text { RHS }=-14.1861 \quad-7.00585 \quad 10.8897 \quad 24.0418 \\
& \text { Second-stage cost: } 3842.45 \\
& \text { Optimal dual vector: } 69.771465 .4-39.2286
\end{aligned}
$$

Newly-generated optimality cut at iteration 4

s i	beta	$\mathrm{x}[1]$	$\mathrm{x}[2]$	$\mathrm{x}[3]$	$\mathrm{x}[4]$	
1	3	-4288.18	818.943	-504.457	1122.83	430.371
2	2	-845.065	169.87	192.696	17	21.6957
3	3	-4242.78	818.943	-504.457	1122.83	430.371
4	3	-4255.29	818.943	-504.457	1122.83	430.371
enario \#, i is dual solution \#, beta is constant						

Aggregate cut:

beta	$\mathrm{X}[1]$	$\mathrm{X}[2]$	$\mathrm{X}[3]$	$\mathrm{X}[4]$
-3407.83	656.675	-330.169	846.371	328.202

Primal subproblems summary
First stage cost: 18.906
Second stage costs:

s	Lambda\#	cost
1	3	-1019.882
2	2	-769.903
3	3	-1065.280
4	3	3842.451

Average second stage cost: 246.846
Total: 265.752

Solution of Master Problem

$$
\begin{aligned}
& X=002.204571 .73698 \\
& \text { First-stage cost: } 17.0044 \\
& \text { Estimated second-stage cost } Q(X)=-944.114 \\
& \text { Total (estimated) expected value: }-927.11
\end{aligned}
$$

```
Output for 200 iterations
    Subproblems were solved approximately, except for
    most recent x and the incumbent!
Stochastic Decomposition
Randomly-generated SLPwR problem (seed= 17853)
Random number seed used in computation: 17977
Method: Subproblems solved approximately
Tolerance for distinguishing first-stage solutions X:
    1.0E-3
# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 399
# first-stage solutions generated: 200
Best solution found is #189 with estimated cost 71.3121
1 2 ~ s e c o n d - s t a g e ~ p r o b l e m s ~ w e r e ~ s o l v e d ~ u s i n g ~ t h i s ~ X ~
# second-stage dual solutions generated: 6
```


Values of first-stage variables (solutions of Master Problem):

- X[1]

마 $\times[2]$
$\approx \mathrm{x}[3]$
$\rightarrow \times[4]$

"Lower" and "Upper" Bounds

(found by Master \& approximate Subproblems):

The Incumbent Solution

```
Evaluation of trial solution # 189
    i variable X[i]
    1 X[1] 1.21096
    2 X[2] 2.18995
    X[3] 3.05608
    4 X[4] 1.06174
```

Three different methods are used to estimate the expected cost of this solution:

Evaluation by:

- Use cuts
- Use recorded dual solutions (i.e., solve subproblems with dual variables restricted to the identified dual extreme points)
- Use recorded Q values (i.e., use actual optimal subproblem solutions computed with this first-stage solution)

1. Using optimality cuts as approximation of expected second-stage cost.
```
First stage objective:
31.76
```

Expected second stage objective:39.84
Total:71.60
2. Using expected second-stage costs approximatedby restriction to 6 recorded dual solutions.
First stage objective: 31.76
Expected second stage objective: 39.65
Total: 71.41
3. Using 12 evaluations of second-stage costs.
First stage objective:
31.76
Expected second stage objective: 33.47
Total:

Suppose that we had expended the extra effort to solve the subproblems optimally for every scenario (rather than only the most recently-generated scenario):

```
Random number seed used in computation: 19138
Method: Subproblems solved exactly
Tolerance for distinguishing first-stage solutions X: 1.0E`3
# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 20299
# first-stage solutions generated: 200
Best solution found is #111 with estimated cost 66.6435
200 second-stage problems were solved using this X
# second-stage dual solutions generated: 10
```

Compared to 6 dual solutions found previously! But over fifty times the number of subproblems were solved, a substantial increase in effort!

