SIMPLE PLANT LOCATION PROBLEM

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dbricker@icaen.uiowa.edu

Ď

Given: M candidate locations, N customers

F_i = fixed cost of establishing a plant at

site i, i=1,2,...M

C_{ij} = cost of supplying all demand of customer j from plant i, j=1,2,...N

The Problem: Select a set of plant locations and allocation of customers to plants so as to minimize the total cost.

Note: there are no capacity constraints for a plant which has been selected, and the number of plants is not specified (unlike p-median problem)

ILP models of the SPL problem

Define variables:

$$Y_i = \begin{cases} 1 & \text{if plant site i is selected} \\ 0 & \text{otherwise} \end{cases}$$

$$X_{ij} = \int 1$$
 if plant i serves all demand of customer j
0 otherwise

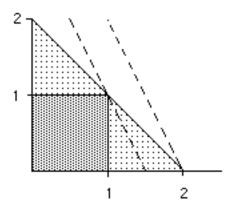
$$\begin{split} & \text{Minimize} \quad \sum_{i=1}^{M} \sum_{j=1}^{N} C_{ij} \; X_{ij} + \sum_{i=1}^{M} F_i \; Y_i \\ & \text{s.t.} \quad \sum_{i=1}^{M} X_{ij} = 1 \quad \forall \; j{=}1, \cdots N \\ & \quad X_{ij} \leq Y_i \quad \forall \; i\&j \\ & \quad Y_i \in \{0,1\}, \; X_{ij} \geq 0 \quad \forall \; i\&j \end{split}$$

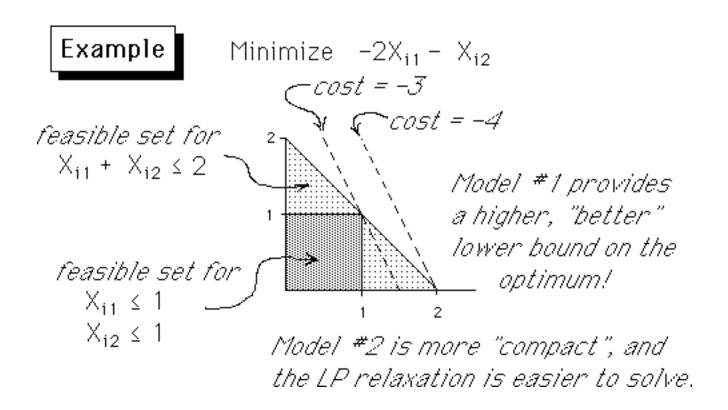
Model #2

Replace constraints $X_{ij} \leq Y_i \quad \forall i \& j$ with aggregated constraints

$$\sum_{i=1}^{N} X_{ij} \leq NY_{i} \ \forall \ i$$

Models #1 & #2 are equivalent, in that the feasible solution sets are identical.... But— their LP relaxations (i.e., replacing $Y_i \in \{0,1\}$ with $0 \le Y_i \le 1$) are not!





Eliminate Y_i Minimize $\sum_{i=1}^{M} \sum_{j=1}^{N} C_{ij} X_{ij} + \sum_{i=1}^{M} \frac{1}{N} F_i \sum_{j=1}^{N} X_{ij}$

$$\implies \begin{cases} \text{Minimize } \sum\limits_{i=1}^{M}\sum\limits_{j=1}^{N}\left[C_{ij}+\frac{F_{i}}{N}\right]X_{ij} \\ \\ \text{s.t. } \sum\limits_{i=1}^{M}X_{ij}=1 \ \forall \ j{=}1, \cdots N \\ \\ X_{ij} \geq 0 \ \forall \ i\&j \end{cases}$$

$$\text{The solution is} \quad X_{ij}^* = \begin{cases} 1 & \text{if} \ \ C_{ij} + \frac{F_i}{N} \leq C_{kj} + \frac{F_k}{N} \ \forall i \\ 0 & \text{otherwise} \end{cases}$$

with objective value
$$\sum_{j=1}^{N} \min_{i} \left\{ C_{ij} + \frac{F_{i}}{N} \right\}$$

Although not a strong bound, this is easily computed:

4 = M = # potential plant sites 8 = N = # demand points

Costs

i	j=	1	2	3	4	5	6	7	8	F
1 2 3 4		4 10 3 8	6 5 5 6	8 10 7 4	9 0 9 7	5 8 4 5	4 10 5 10	3 9 2 8	0 9 3 8	140 120 177 128
D		98	12	7	33	49	33	87	78	

Weak LP Relaxation of Simple Plant Location Problem

The Matrix C + (F÷N)

_	t	.0							
f	/	1	2	3	4	5	6	7	8
r	1	144	146	148 130 184 132	149	145	144	143	140
M	2	130	125	130	120	128	130	129	129
	4	136	134	132	135	133	138	136	136

The LP bound is found by summing the minima in each column Lower bound provided by weak LP relaxation = 1031.38

Minimize
$$\sum_{i=1}^{M} f_i(X_{i1}, X_{i2}, \dots X_{iN})$$

subject to
$$\sum_{i=1}^{M} X_{ij} = 1 \quad \forall j=1,2,...N$$

$$X_{ij} \geq 0 \ \forall \ i\&j$$

$$\text{where} \\ f_i(X_{i1}, X_{i2}, \cdots X_{iN}) = \begin{cases} 0 \text{ if } \sum\limits_{j=1}^N X_{ij} = 0 \\ F_i + \sum\limits_{j=1}^N C_{ij} X_{ij} \text{ otherwise} \end{cases} \\ \begin{cases} x_{ij} = 1 & \forall j = 1, 2, \dots N \\ \text{is all in the problem of } \\ \text{continuous variables only, but objective is discontinuous} \\ \text{is discontinuous} \end{cases}$$

Surrogate Constraint Define a surrogate multiplier for each constraint: U_j , j=1,...N; $\sum_i U_j = 1$

Form a linear combination of the constraints

$$\left. \begin{array}{l} U_1 \times \sum_i \ X_{i1} = U_1 \times \mathbf{1} \\ \vdots \\ U_N \times \sum_i \ X_{iN} = U_N \times \mathbf{1} \end{array} \right\} \Rightarrow \sum_j U_j \sum_i \ X_{ij} = \sum_j \ U_j \Rightarrow \sum_j \sum_i \ U_j X_{ij} = \mathbf{1}$$

This *surrogate constraint* is implied by the original set of constraints, but is less restrictive.

Surrogate Relaxation We replace the original constraints of Model #3 with the single surrogate constraint:

Minimize
$$\sum_{i=1}^{M} f_i(X_{i1}, X_{i2}, \dots X_{iN})$$

subject to
$$\sum_{j} \sum_{i} U_{j} X_{ij} = 1$$

$$X_{ij} \geq 0 \ \forall \ i\&j$$

Because the objective function is *concave*, the theory of nonlinear programming assures us that an extreme point of the feasible region (i.e., a *basic* solution) is optimal, so only a single variable is ≠ 0.

For example,
$$X_{ij} = \begin{cases} 1/U_q & \text{if } i=p, j=q \\ 0 & \text{otherwise} \end{cases}$$

with cost
$$F_p + C_{pq} \times 1/U_q$$

for some p and q.

Therefore, we can solve the surrogate relaxation by enumerating the MxN basic solutions, and selecting the least cost solution:

$$\mathbf{S}(\mathbf{U}) = \underset{i,j}{\mathbf{minimum}} \left\{ F_i + C_{ij} \middle/ U_j \right\}$$

Because the optimal solution of the original SPL problem is feasible in this surrogate relaxation,

$$S(U) \leq \text{optimum of SPL problem}$$

for all
$$U = (U_1, U_2, ..., U_N)$$

Surrogate
Dual Problem

Since for each U, S(U) gives us a lower bound on the SPL optimal value,

select the surrogate multipliers U to give us the "best", i.e., greatest lower bound:

$$\widehat{\mathbf{S}} = \underset{j}{\text{maximum}} \ \mathbf{S}(\mathbf{U})$$

$$s.t. \ \sum_{j} \ \mathbf{U}_{j} = \mathbf{1}$$

Use of Surrogate
Dual bound in a
Branch-&-Bound
algorithm

Given a value **V** (e.g., the incumbent solution), we can fathom a subproblem if its surrogate dual value \hat{S} exceeds V, and this may be tested

without explicitly computing 🕏:

$$\begin{split} \widehat{S} \geq V \Longleftrightarrow \exists \ U = & (U_1, \cdots U_N) \ \text{such that} \ \begin{cases} V \leq F_i + C_{ij} \middle/ U_j & \forall \ i \& j \\ \sum_j \ U_j = 1 \end{cases} \end{split}$$

Assuming F_i < V, this is equivalent to

$$\left\{ \begin{array}{l} U_{j} \leq \frac{C_{ij}}{V - F_{i}} \ \forall i \& j \\ \\ \sum_{j} U_{j} = 1 \end{array} \right.$$

which clearly has a solution if and only if the least upper bounds of U_i , j=1,...N, have a sum ≥ 1 :

$$\widehat{\mathbf{S}} \geq \mathbf{V} \iff \sum_{j} \ \underset{i}{min} \left\{ \frac{C_{ij}}{\mathbf{V} - F_{i}} \right\} \geq \mathbf{1}$$

$$\frac{C_{ij}}{V - F_i}$$

Sum:
$$\sum_{i} \min_{i} \left\{ \frac{C_{ij}}{V - F_{i}} \right\} = 1.023$$

The conclusion of the comparison test is:

$$\widehat{\mathbf{S}} \geq \mathbf{V}$$
 (= 1031)

By any of several methods, the equation

$$\sum_{j} \min_{i} \left\{ \frac{C_{ij}}{-F_{i}} \right\} = 1$$

may easily be solved for $\widehat{\mathbf{S}}$ if the actual value of $\widehat{\mathbf{S}}$ is necessary.

Surrogate Dual Algorithm

```
Lower bound= 1074, Upper bound= 1449
Estimated duality gap = 25.89%
```

Upper bound achieved by Y = 1 1 1 1, i.e., opening plants 1 2 3 4

(Not guaranteed to be optimal!)

Surrogate Dual Algorithm

Matrix C÷α(ΦρC)ρ(SD-F)

```
0.4198 0.0771 0.05997 0.318 0.2624 0.1414 0.2795 0
1.027 0.0629 0.07339 0 0.411 0.346 0.8209 0.736
0.3278 0.0669 0.05464 0.3312 0.2185 0.184 0.194 0.2609
0.8289 0.07612 0.0296 0.2442 0.259 0.3489 0.7358 0.6597
```

(Y[i]=1 if any column minimum,i.e., Lambda,
 is found in row # i of the matrix above)

Surrogate multipliers

j 1 2 3 45 6 7 8 Lambda[j] 0.3278 0.0629 0.0296 0 0.2185 0.1414 0.194 0

$$\begin{array}{|c|c|c|c|c|c|}\hline Theorem & \text{if } \mu_{ij} \geq 0 \text{ and } \sum_{i=1}^N \mu_{ij} \leq F_i \ \forall i \end{array}$$

then $\sum_{i=1}^{n} \min_{i} \{C_{ij} + \mu_{ij}\}$ is a *lower bound*

for the Simple Plant Location problem

Note: If $\mu_{ij} = \frac{F_i}{N}$ $\forall i,j$, this is the lower bound provided by the LP relaxation of model #2! By appropriate choice of μ_{ij} , it may give us a better Jawer haund

Proof: SPL model #1 may be written

$$\Phi = \text{minimum} \, \sum_{i,j} \, C_{ij} X_{ij} + \sum_i \left(F_i - \sum_j \, \mu_{ij} \right) \! Y_i + \sum_{i,j} \, \mu_{ij} Y_i$$

s.t.
$$\sum_{i} X_{ij} = 1$$
, $X_{ij} \le Y_i$, $X_{ij} \ge 0$, $Y_i \in \{0,1\} \ \forall i,j$

$$\Rightarrow \Phi \geq \sum_{i,j} |\mathbf{C}_{ij}X_{ij}| + |\sum_{i,j} |\boldsymbol{\mu}_{ij}Y_i| \geq \sum_{i,j} |\mathbf{C}_{ij}X_{ij}| + |\sum_{i,j} |\boldsymbol{\mu}_{ij}X_{ij}| = \sum_{i,j} \left(\mathbf{C}_{ij}|_{+}\boldsymbol{\mu}_{ij}\right) X_{ij}$$

$$\Rightarrow$$
 minimum $\sum_{i,j} (C_{ij} + \mu_{ij}) X_{ij}$

s.t.
$$\sum_{i} X_{ij} = 1$$
, $X_{ij} \le Y_i$, $X_{ij} \ge 0$, $Y_i \in \{0,1\} \ \forall i,j$

must give us a lower bound for SPL, namely

$$\sum_{i=1}^{N} \min_{i} \{C_{ij} + \mu_{ij}\}$$

The dual problem is, then, to choose the quantities μ_{ij} so as to obtain the *greatest lower bound*, i.e.,

$$\begin{aligned} \text{Maximize} \quad & \sum_{j=1}^{N} \ \underset{i}{\text{min}} \left\{ C_{ij} + \mu_{ij} \right\} \\ \text{s.t.} \quad & \sum_{j} \ \mu_{ij} \leq F_i \ \forall \ i \\ & \mu_{ii} \geq 0 \ \forall \ i,j \end{aligned}$$

$$\begin{aligned} & \text{Maximize} \quad \sum_{j=1}^{N} \ \underset{i}{\text{min}} \left\{ C_{ij} + \mu_{ij} \right\} \\ & \text{s.t.} \quad \sum_{j} \ \mu_{ij} \leq F_i \ \forall \ i \\ & \mu_{ij} \geq 0 \ \forall \ i,j \end{aligned}$$

The LP equivalent:

$$\begin{aligned} \text{Maximize} & \sum_{j=1}^{N} Z_j \\ \text{s.t.} & Z_j \leq C_{ij} + \mu_{ij} \ \forall \ i,j \\ & \sum_{j} \mu_{ij} \leq F_i \ \forall \ i \\ & \mu_{ij} \geq 0 \ \forall \ i,j \end{aligned}$$

The dual of this LP is, in fact, the **LP relaxation** of SPL model #1!

Bilde-Krarup-Erlenkotter [BKE] Algorithm

This algorithm is a dual ascent algorithm for computing good feasible solutions to the dual of the LP relaxation of Model #1.

At each iteration, exactly one μ_{ij} is adjusted to give an improvement in the lower bound. It terminates when no improvement can be obtained by adjusting a single multiplier.

Bilde-Krarup-Erlenkotter Dual Algorithm

Step 1: k+1 & Lambda+ 294 60 28 0 196 132 174 0

Step 2a: ∈= 98 0 0 0 0 0 0 0

Lambda[1]= 392

e= 0 0 98 0, LB= 982

Step 2a: ∈= 98 0 0 0 0 0 0 0

Lambda[2]= 60

e= 0 0 98 0, LB= 982

Step 2a: ∈= 98 0 21 0 0 0 0 0

Lambda[3]= 49

e= 0 0 98 21, LB= 1003

Step 2a: ∈= 98 0 21 120 0 0 0 0

Lambda[4]= 120

e= 0 120 98 21, LB= 1123

Step 2a: ϵ = 98 0 21 120 49 0 0 0 Lambda[5]= 245 e= 0 120 147 21, LB= 1172

Step 2a: ϵ = 98 0 21 120 49 33 0 0 Lambda[6]= 165 e= 33 120 147 21, LB= 1205

Step 2a: ∈= 98 0 21 120 49 33 30 0 Lambda[7]= 204 e= 33 120 177 21, LB= 1235

Step 2a: ε= 98 0 21 120 49 33 30 107 Lambda[8]= 107 e= 140 120 177 21, LB= 1342

Step 3: do not terminate. Set k← 2

Step 2a: ϵ = 0 0 21 120 49 33 30 107 Lambda[1]= 392 e= 140 120 177 21, LB= 1342

```
Step 2a: \epsilon= 0 0 21 120 49 33 30 107 Lambda[2]= 60 e= 140 120 177 21, LB= 1342
```

Step 2a: ϵ = 0 0 0 120 49 33 30 107 Lambda[3]= 49 e= 140 120 177 21, LB= 1342

Step 2a: ε= 0 0 0 0 49 33 30 107 Lambda[4]= 120 e= 140 120 177 21, LB= 1342

Step 2a: ϵ = 0 0 0 0 0 33 30 107 Lambda[5]= 245 e= 140 120 177 21, LB= 1342

Step 2a: <= 0 0 0 0 0 0 30 107 Lambda[6]= 165 e= 140 120 177 21, LB= 1342 Step 2a: ∈= 0 0 0 0 0 0 0 107 Lambda[7]= 204 e= 140 120 177 21, LB= 1342

Step 2a: ϵ = 0 0 0 0 0 0 0 0 Lambda[8]= 107 e= 140 120 177 21, LB= 1342

Lower bound= 1342, Upper bound= 1342 Duality gap = 0% No Duality Gap!

Upper bound achieved by Y = 1 1 1 0, i.e., opening plants 1 2 3

Lagrange multipliers

j	1	2	3	4	5	6	7	8
Lambda[j]	392	60	49	120	245	165	204	107

Summary of Results for Example Problem

		gap
Optimal Solution of SPL =	1342	_
LP Relaxation of Model #1 =	1342	0%
Surrogate Relaxation of Model #3=	= 1074	20%
LP Relaxation of Model #2 =	1031.38	23%