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Lagrangian Relaxation

Define a multiplier A.=0 for each point i

The Lagrangian relaxation is

"%
j=1 i=1 i=1

M M i N ;
Minimize 3 C, X+ > 11(1 Y a--}{-)
subject to }{J-E{U,i} for each j=1, 2, ...N

)
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M M ’ H ;
®) = Minimum > C, X+ > 11(1 - > ai]-}i]-)

i=1 i=1 . 1=1 .
subject to KJ—E{[},I} for each j=1, 2, ...N
M| M ;
@A) = Minimum Z(C]—— > ha

¥;= {01} j=l i=1

s

M
X+ '21 A
i=

lnterprefafion:  We no longer require that each point |
be covered. Rather, we offer an incentive A. for each |

point 1 which is covered.

@0 L. EBricker, L. of 14, 1993



overing-2 8/22/00 page

The Lagrangian relaxation 1s trivial to solve:

-

H gl

M
Xi+ 2 A,
X e {01} j=1 = i=1

H M M
= z Minmimum UJC]“ Zliaij + z ;]'i
j=1 i=1 i=1

That is, we select set #j if its "reduced cost’,
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Suppose that X™ is the optimal solution of the
original set-covering problem. Then for any A 20,

H M H

i= i

IA
=

j=1 =1
That 15, the solutnon . ;
o B LSS 20
FElEN SN o ides H i i
7 fower bound o S¥ L | < 2 CX; =Z
E: ]=1
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Lagrangian Dual Problem

For each A=0, ®(A) is a lower bound on the
optimum of the SCP.

The Lagrangian Dual problem 1s to select A
so as to obtain the greafes? lower bound:

Maximize $(d)
L=0

F &
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Wwhat is the nature of the dual objective functionddy?

In solving the Lagrangian relaxation, we must choose
frorm among 2N different collections of sets, each
specified by a vector XX, k=1, 2, ..2N

®;= 01y 4= i=1 =

H M H Lk
= mini Z Zlii—zaij?{j
k=1, 2 =1 i=1 i=1
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Ny M M
k=1,2, .29 ] j=1 i=1 j=1

M .k -~k
= minimum { >, A+ P
k=12 .28 | o '

d(A) is the minimum (the "lower envelope") of a set of

EN linear functions!
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d 15 concave and
piecewise linear!
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Subgradient Optimization |

One method of searching for the optimal dual
variables is to step in the direction of a
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At iteration t, let L' be the current value of

o1 .
the dual variables, and let X be the solution of
the Lagrangian relaxation. That is,

D) zcx 21(1 Zalj}{)

Then A is a subgradient of & at JL,
with elements ‘ :
( Zal] ])

-
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+1
Let the step taken be ?Lt = J'Lt+ oA

Rather than selecting the stepsize o bv a
one-dimensional search method
(e.g., golden-section or Fibonacci search,
which requires many evaluations of the
function @A +oA) ),
"subgradient optimization selects the stepsize

7 - cim(jl,t) where Z' is an upper bound,
=T

||£||2 and < is in the interval (0,2]

)
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L o, -
* T If stepsize parameter T is
E - ¢ .::lll.. F::
EE ) exactly 1, then the step would
||,5,|| take us to the point where the
[|< line reaches 2%
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If there is a "gap”, then
when near the aptimum,
i.e, when A issmall,
the step may be too large!
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Dual Ascent

Subgradient optimization i1s guaranteed to
converge to the optimal dual value, but not
monotonically.

In "dual ascent”, the dual objective increases
monotonically at each iteration (i.e., never
decreases). However, it may not converge to
the optimal dual value.

)
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Dual Ascent

Choose a multiplier whose subgradient element

H 4
j=1

-~

is nonzero, i.e., A, such that 0 = § =

FThie means thal poind # 7 i pol covered i
8,= 1, o &fse cowvered &) more than one sel i
Ei <@/
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If a multiplier i1s adjusted upward or downward by
an amount which leaves the signs of the reduced

costs unchanged, then the 2 solving the Lagrangian
relaxation 15 unchanged, although @A) changes.

o) toom N
j=t i=1 j=1
H ot I

j=1 i=1
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Consider first the case §,= +1,
i.e., point ¥1 is uncovered.

As we increase A, the dual objective function
increases with slope +1, until the reduced cost
of a set which covers 1 becomes zero or negative.

At that value of A, , the slope of @) becomes
Zero.

for this step, point #i L

for this step, point #i
has two covering sets

has a covering set
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In the case & <0, point i has multiple covering sets:

As we decrease A, , the dual objective function
increases, and the reduced cost of each set
covering point 1 increases. Sets drop out of the

solution when their reduced cost reaches zero.

when A, reaches this when A, reaches this
value, the last set value, only one set
e arobs o covering pt.iis in sol'n |
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