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| Definition of separability

| Piecewise-Linear Optimization

| Restricted Basis Entry rules

| Example

I| Refining the Grid
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A function f(xy, %, ---X,) 15 sepzrab/e
if it can be written as a sum of terms,
each term being a function of a s/ng/e
variable:

f(x1, %z, X ) = > fi(xy)
1=1

not separable }

separable

X + 2 1n x XXs + X5
examples
X7 + 3x; + 6% - X5 531&2 - X4

&)
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Piecewise-Linear
(separable)

Programming

fiz)

8/22/00

We approximate a nonlinear
separable function by a
piecewise-linear function:

Co i
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Piecewise-Linear |

(separable)
Programming

There are two ways to formulate the
piecewise-linear programming problem
as a Linear Programming problem:

=

=

"LAMBDA"™ formulation
"DELTA" formulation

@Dennis Bricker, L. of [owa, 1932
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MEVCIIECSROEEYE Suppose that f(z) is a comvex
EEc I function.
el el Let 8o, &, ... be specified “grid
= noints”, and
fiz) Lo, Ay, ... be "weights”

where
Z ;]'i: 1, ;]'i = )

cc. : A
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Any walue of 2 in the interval between the left—-most
and the right-most grid point may be expressed as 4
“convex combination” of the grid points:

f(z) 2= Al + MGy + Mols + Al

where

cc. : A
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With the same "weights” used n writing the convex
combination of the grid points,

z=hlp + MGy + Ao + Asls |

we approximate fiz) as a convex cmmbmatmn of the
() function valuea at the grid points

= Ao £{C) + 4 f(Cl) MG 1 Aaf () |

—_————

cc. : A
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Suppose that f(z) is
piecewise linear and
CORVEX. ..

By the definition of "convex”,
this means that every chord of
the graph of f(z) lies an or
above the graph!

Consider now the various convex
combinations of grid points yielding

0 1 2
@Dennis Bricker, L. of [owa, 1932
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| T L T
0 1 2 5

A given value of z, e.q., z=1.70, can be represented
by several different convex combinations of the grid

points: 1.75 = 2-(0) + L (3)
1.75 = %(1) +%(3}
1.75 = %(1)+%(2)+%(3)

1.75 = %{1}+%(2)

elc.

@Dennis Bricker, L. of [owa, 1932
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5_

. T —
0 1 2
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Each set of "weights” in the
convex combinations (which
vield the same z) when used
to welght the function wvalues,
will result in a different
approximation to f(z),

11
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The point (21: LG, zl: i f(Cﬂ)

lies on a chord of the graph

which is, of course, on or above
the graph.

That is, 2. A f({;)) is in general an

0 1 2
@Dennis Bricker, L. of [owa, 1932
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0 1 2
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5_

Liy+ 1l =2
+Le2)+ Le3)=2

0 1 2 3
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1.75 =

£(1.75) =

0 1 2
@Dennis Bricker, L. of [owa, 1932
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Of the various ways to
express z as a convex
combination of grid points,
the way which results in
the minimum value for

an approximation of f(z)

i1s that which assigns
positive weights only to
the grid points immediately
to the left and right of z.

Fis is the conveyx combinaglion
which best approxi-

0 1 2
@Dennis Bricker, L. of [owa, 1932
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_ 1 3
1.75= 2(1) +2@)

f{l.?ﬁ]:iﬂ:l} + %f(z) :E

... the convex combingiion
which vields the [OWEST
viglve for 117, 75) uses only
Ewo ADJACENT grid poinis?

: . —
0 1 2
@Dennis Bricker, L. of [owa, 1932
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When minimizing a cenvex function f(z) by

choosing the weights in the convex combination,
then,

_at most TWO A’s will be positive, and |
these will be weights of adjacent grid 5'5
points!

What happens ir (=7 is NOT convex ?

@Dennis Bricker, L. of [owa, 1932
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(Z LG, 2 A f(gi}) when f(z) is not convex,
' ' the chords do not all lie
f on or above the graph, and
one can choose convex

combinations of grid
points yielding approxi-
mations of f(z) which
are underestimates of
the function.

GGG G g
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For example, in this figure, the lowest (and the
worst!) estimate of f((;) would be obtained by

f

expressing (; as a convex combination of
G and Oyt G=0, 8 + 2484

* with f(C;) approximated
by A £(C;) + A4 £(Cy)

whereas the besi ™ gpproxi-
malion is oblained by

oL 8, G Lo Ga=00 + 03 18 +0C,
&

@Dennis Bricker, L. of [owa, 1932
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“Delta” form
of Separable

Programming

8/22/00

In the "lambda”™ formulation,
a special variable (L) was
defined for each grid point.
In the "delta”™ formulation, a
special variable (& ) will be
defined for each interval
between grid points, 1.e., for
each linear piece.

fhere agre Iwo varigfions. ...

@Dennis Bricker, L. of [owa, 1932
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“Delta” form | ML

of Separable

Programming

SEUNA NG
Define consianis.
ACi= G- (i
Afi = £(8)- (i)
Define varighies.
0=8=1 OF 0= A= A(j

@Dennis Bricker, L. of [owa, 1932
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b f(z)

“Delta” form
of Separable

Programming

8/22/00

23

variation #1

2ach vartahie rs
bounded hetween
zero and F.00

@Dennis Bricker, L. of [owa, 1932
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b f(z)

“Delta” form
of Separable

Programming

24

variation #2

eacl variabie fas an
gpper bouand equal (o
the fength of the interval

Ai=[AG) 8

@Dennis Bricker, L. of [owa, 1932
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IR LIdl  In either variation, at most

VEREDEIDIEE  ONE variable is allowed to be

Programming at an intermediate value (not

a bound), i.e., BASIC when we
use UBT (upper bounding technique)

Nariation #1| W oriction v> |
p

z= (g + 2(AC)E;
i=1

P
f(z) = £(Cy) + ;(ﬁ fi)3;

0= 8p=--28 =1 0= Aj= A(

@Dennis Bricker, L. of [owa, 1932
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If we are:
# minimizing a non—convex function
&/or
# optimizing over a nonconvex region
e.g., g(x)<0 where g is non—-convex,

Then the simplex method will yvield a basic
solution in which

e at most two (adjacent) A's are basic

Restricted
Basis Entry

(A-formulation)

sonly one § is basic
(&-formulation)

&) Rules

@Dennis Bricker, L. of [owa, 1932
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In these cases, a "restricted basis entry” rule
may be implemented, which will guarantee that
the solution satisfies the desired properties,

® at most 2 A's are in the basis, in which case they
have consecutive indices ( A-formulation)

® at most one & is in the basis (6-formulation)

but unfortunately will not guarantee an optimal
solution!

@Dennis Bricker, L. of [owa, 1932
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Restricted
Basis Entry
Rules

Constraint |

Li; 15 positive for at
most TWO values of j,

in which case they are

consecutive indices.

@Dennis Bricker, L. of [owa, 1932
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“Lambda” formulation
Special set: {Aig, Ai1, - Aip )

How can we modifly

\ the simplex melhod

50 5 to impose his
resiriction ?
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Restricted
Basis Entry

Rules

Constraint |

Aij 15 positive for
at most TwWO values
of J, in which case

they are consecutive
indices,

@Dennis Bricker, L. of [owa, 1932

8/22/00

“Lambda” formulation
Special set: {Aig, Ai1, - Aip )

RBE Rule |

If 2 adjacent weights are in
the basis, then no other weight
from the same sel may be
considered for basis entry;

if only one weight ;; is

basic, then only &1 & & i1

are considered as candidates
for basis entry
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“Lambda” formulation

Restricted Special set: {Ap, Xi1,--- liP I

Basis Entry

Rules

Note that 1his moedificalion of lhe simplex
melhod does nol guaraniee oplimalily, unfess

the functron being minimized 1s & convex
funciiont

@Dennis Bricker, L. of [owa, 1932
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Rules

Constraint

8;; 15 at an intermediate
level (neither lower nor
upper bound) for at most
a single j (i.e., if UBT is
used, at most one variable
in the set is basic.)

@Dennis Bricker, L. of [owa, 1932

~

r

REE_tI“iCtEd _ "Delta” formulation
Basis Entry Special set:

[9it, diz, - -+ Bip}

How can we modif ¥
the simplexy melhod
50 5 Lo impose this
restriction?
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REE_tI“iCtEd "Delta” formulation
Basis Entry Special set: (31, 3i2, -+ djp}

RBE Rule |

Rules

Constraint | &;; is not considered for
: basis entry unless:

8ij is at an intermediate  # no other variable in the
level (neither lower nor set is basic

upper bound) for at most _
one j (ie., if UBT is used, ® 8ij-1 1S at upper bound

at most one variable in - g 8 i, is at lower bound
the set may be basic.) &

@Dennis Bricker, L. of [owa, 1932
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REE_tI“iCtEd "Delta” formulation
Basis Entry Special set: (31, 3i2, -+ djp}

RBE Rule |

Example |

e varighfe may
enter the basis

3.,0,0,0,0,0
S A
B

@Dennis Bricker, L. of [owa, 1932
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REE_tI“iCtEd "Delta” formulation
Basis Entry Special set: (31, 3i2, -+ djp}

RBE Rule |

Rules

Example |

i IRis case,
o variahie in
the sef is imn the

conRsiderad for
basis enlry bhasic el B
“ ‘ ane variahie min f
1,1,1,1,1,0,0, 0,0, 0,0 .
Y . RN . + and one varighie
U L mn & may enler 5
-

@Dennis Bricker, L. of [owa, 1932
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A company manufactures three products,
using three limited resources:

resources A pr‘anuct c agﬂb‘gﬁ!e
ingredient #1 1 2 1 1000
ingredient #2 10 4 o 7000
ingredient #3 2 1 4000

@Dennis Bricker, L. of [owa, 1932
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Because of various factors (e.g., quantity
discounts, use of overtime, etc.) the profits
per unit decrease as sales increase:

product A

product B

sales

0-40 10

40-100 g
100-150 0
over 150 7

@Dennis Bricker, L. of [owa, 1932

prnfit
($/unit)

sales profit

product C

sales pr‘nfit

over 100 3

($/unit)

0-20 6
20-100 4

($/unit)
0-100 5 |

over 100 4

Fetermine the most
profitaiie mix of products
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slope

$7unit
Profit slope
Pﬁ[}{ﬁ] $Eifumt “5[:',]34[:':'
$10007 slope
1 $0/unit (100,940)
F500 - SLDII'E_
| ¥ 40 400)
| 5.0 | H%JD | 1I5CI
R4

@Dennis Bricker, L. of [owa, 1932
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38

slope

slope $2/unit
$500 4 f4 unit
Profit SLDDE_ (100, 5000
Fa(Xp) 1 P50 300)
a0 100 150
HEI
slope
$4/unit
FS00 - slope
Profit 55 unit (100 500)
PXc)
a0 100 150

@Dennis Bricker, L. of [owa, 1932
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Maximize pai(xa) + pr(xp) +pcixc)
subject to

Xp + 2Xp+ xc = 1000

10xs + 4xp + Sxc = 7000
Ixs + 22X+ xc = 4000

Xp=20,xgz=0,x020

Each profit function p,, pg. & pg,

is piecewise linear.

@Dennis Bricker, L. of [owa, 1932
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We can reformulate this as a linear
programming problem in two ways:

=

“delta” formulation
one variable for each interval

“lambda” formulation
one variable for each grid point

@Dennis Bricker, L. of [owa, 1932
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"Delta” formulation

Define

As1 = quantity of A produced at $10/unit profit,
Apz = quantity of A produced at $9/unit profit,

... etc.
so that
Pala)=10A a1 + QA2+ 8A sz + T Apa
0= Apg = 40
0= Apo= 60 =100-40
0< Aaz< 50 =150-100
0= Aapg
o

@Dennis Bricker, L. of [owa, 1932
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Since the simplex algorithm will maximize,
the optimum will NOT use a positive value
for Ax> unless the more profitable A.; has
reached its upper limit (40), etc.

Thus, the simplex algorithm will naturally

impose the restricted basis entry (RBE) rules.

(these profil runctions exfitit “decredsing
retfurns te scafe”... /

@Dennis Bricker, L. of [owa, 1932
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Aunl Aaz Aaz Aag Apl Ape ApzAct Aco

Max| 10 9 8 7 |6 4 3| 5 4
1 1 1 1 ]2 2 201 1]¢
10 10 10 10 | 4 4 4 | 5 5 |<| 700
3 03 3 3 |2 2 2|1 1|¢400
hoeds| 0 0 0 0 |0 0 0| 0 O
bounds | 40 60 50 o

@Dennis Bricker, L. of [owa, 1932
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“Lambda” formulation

We require an upper bound (right-most grid
point) for each product A, B, and C. Let's
arbitrarily use 1000 for each.

Define a weight for each grid point.:

Ao 0O
Aoy« 40
Lo <> 100
Loz <> 150
cﬂ l‘Aﬂ < 1000

@Dennis Bricker, L. of [owa, 1932
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"Lambda” formulation

Substitute
PalXa) = 0 A + 400 Ay + 940 A,z + 1340 A5 + 6590 A,

and
Xp = 0 ;]”AD + 40 ;]'AI + 100 :]"AE + 150 ;]'AS + 1000 ;I-.-Aq

etc.

@Dennis Bricker, L. of [owa, 1932
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“Lambda” formulation

Max

0 400 940 1340 &5%0 [0 300 500 z200 | O 3500 4100

0 40 100 150 1000 [ O 100 200 2000 | O 100 1000(={1000 |
0 400 1000 1500 1o000 ( 0 200 400 4000 (O 00 S000)=7000
0 120 200 430 =000 (O 100 200 2000 | O 100 1000)=4000
11 1 1 1 = 1

@Dennis Bricker, L. of [owa, 1932
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