

Tree
ree
ree
ree
ree

Search Trees

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dennis-bricker@uiowa.edu

Search Trees ↲ ↳

Search Trees

- Each node of the **search tree** for a problem represents a **subset of feasible solutions** of the problem
- The **root** of the tree represents the set of all feasible solutions of the problem
- The **descendents** of each node of the tree represent a **partition** of the set represented by that node

A collection of subsets B_i of set A ($i=1,2,\dots,t$)
is a **partition** if

$$B_1 \cup B_2 \cup B_3 \dots \cup B_t = A$$

and

$$B_i \cap B_j = \emptyset \quad \text{if } i \neq j$$

Example: Ranking Nodes in a Preference Graph

In many experiments (especially in the social sciences, when numerical measurement of attributes are difficult or impossible), one is required to **rank** a set of objects by comparing only **two at a time**.

Example

Six different dog foods are to be ranked according to their appeal to dogs.

Each day, 2 of the 6 are served to a dog, who indicates his preference by finishing it first.

In the dog food example, the dog exhibited some inconsistency: for example,

he preferred A over B,
B over D,
and D over A!

How can we establish a "good" ranking?

Methods for Ranking

- ranking by score: the score of an object is the number of pairs in which it is preferred (i.e., the row-sum of the preference matrix).
 - ties may occur
 - assumes every possible pair was compared

	A	B	C	D	E	F	<u>score</u>
A	-	1	1	0	1	1	4
B	0	-	0	1	1	0	2
C	0	1	-	1	1	1	4
D	1	0	0	-	0	0	1
E	0	0	0	1	-	1	2
F	0	1	0	1	0	-	2

For example,
A > C > B > E > F > D
or C > A > F > E > B > D
etc.

Methods for Ranking

- **ranking by Hamiltonian path:** find a path through every node of the preference graph such that each node is preferred over its successor.
For example, $A \rightarrow C \rightarrow B \rightarrow E \rightarrow F \rightarrow D$
or $A \rightarrow C \rightarrow E \rightarrow F \rightarrow B \rightarrow D$

(several such paths may exist!)

Methods for Ranking

- **ranking with minimum discrepancies**

A discrepancy is an instance in which X is ranked above Y, but Y is preferred to X

For example, the ranking $A > B > D$ has one discrepancy (i.e., $A > D$)

- does not assume that every pair was compared!
- is a difficult problem to solve

Using a Search Tree for Minimum Discrepancy Ranking

Two different methods for partitioning:

- choose a pair of objects X & Y which have not been ranked.

Form two subsets of rankings:

- those in which $X > Y$, i.e., X is ranked above Y
- those in which $Y > X$, i.e., Y is ranked above X

Second method of partitioning:

- an object is assigned to a position in the ranking
e.g., in the first partition, n nodes are created,
in each of which one of the n objects is assigned
to the **first** position in the ranking, and
in the second partition, $n-1$ nodes are created,
one for each of the remaining $n-1$ objects which
might be assigned to the **second** position in the
ranking, etc.

Example

First Partitioning Method

	A	B	C	D	score
A	-	1	1	0	2
B	0	-	0	1	1
C	0	1	-	1	2
D	1	0	0	-	1

We will partition the most promising node, that with no discrepancies

i.e., $A>B>C$
 $(B>C \text{ is a discrepancy})$

	A	B	C	D
A	-	1	1	0
B	0	-	0	1
C	0	1	-	1
D	1	0	0	-

Again, we partition the most promising node

There remain 4 leaf nodes which are NOT terminal nodes, but each of these will have descendants with AT LEAST ONE discrepancy!

The ranking $A>C>B>D$ is a minimum-discrepancy ranking.

Example

Second Partitioning Method

	A	B	C	D	score
A	-	1	1	0	2
B	0	-	0	1	1
C	0	1	-	1	2
D	1	0	0	-	1

We will partition the most promising node, that with one discrepancy

$\Delta = \#$ discrepancies

	A	B	C	D
A	-	1	1	0
B	0	-	0	1
C	0	1	-	1
D	1	0	0	-

Second
Partitioning
Method

*We will partition the
most promising node,
that with one discrepancy*

$\Delta = \#$ discrepancies

	A	B	C	D
A	-	1	1	0
B	0	-	0	1
C	0	1	-	1
D	1	0	0	-

Second
Partitioning
Method

We will partition the most promising node, that with one discrepancy

$\Delta = \#$ discrepancies

	A	B	C	D
A	-	1	1	0
B	0	-	0	1
C	0	1	-	1
D	1	0	0	-

Second
Partitioning
Method

*All remaining
leaf nodes have
AT LEAST TWO
discrepancies!*

