Stochastic Transportation Problem

non-simple recourse normally-distributed demand

Stochastic Decomposition

© D.L.Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa

DATA

Stochastic Transportation

First-stage data:

A,B=

1	1	1	0	0	0	0	0	0	=	9
0	0	0	1	1	1	0	0	0	=	3
0	0	0	0	0	0	1	1	1	=	8

i	variable	cost
1	X11	0
2	X12	2
3	X13	3
4	X21	2
5	X22	0
б	X23	2
7	X31	3
8	X32	2
9	X33	0

Objective: Minimize

Second-stage data

Costs:

i	variable	q	
1	Y12	6	
2	Y13	10	
3	Y21	6	
4	Y23	15	
5	Y31	12	
6	Y32	15	
7	EX1	-4	<- <i>excess</i>
8	EX2	-4	supply
9	EX3	-2	
10	SH1	15	<- <i>shortag</i> e
11	SH2	20	of supply
12	SH3	30	

Technology matrix T

(coefficients of X in 2nd stage) =
 1 0 0 1 0 0 1 0 0
 0 1 0 0 1 0 0 1 0
 0 1 0 0 1 0 0 1

Technology matrix W

(coefficients of Y in 2nd stage) = -1 -1 1 0 1 0 -1 0 0 1 0 0 1 0 -1 -1 0 1 0 -1 0 0 1 0 0 1 0 1 -1 -1 0 0 -1 0 0 1

(Only the right-hand-side vector is random!) Right-hand-sides in second stage =

	std dev	mean	<u>i</u>
random	2	6	1
demands	2	7	2
	3	7	3

Certainty-Equivalent Tableau

Using expected values for right-hand-sides

b	z	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	10	11	12
0	1	0	2	3	2	0	2	3	2	0	б	10	6	15	12	15	-4	-4	-2	15	20	30
9	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	0	0	1	0	0	1	0	0	-1	-1	1	0	1	0	-1	0	0	1	0	0
7	0	0	1	0	0	1	0	0	1	0	1	0	-1	-1	0	1	0	-1	0	0	1	0
7	0	0	0	1	0	0	1	0	0	1	0	1	0	1	-1	-1	0	0	-1	0	0	1

Optimal Solution

Total objective function: 8 Stage One: nonzero variables:

i	variable	value
1	X11	6
2	X12	3
5	X22	3
8	X32	1
9	X33	7

Second Stage: nonzero variables

i variable value

--none—

Benders									
Stochastic Decomposition									
Initial first-stage decisions									
O User-supplied Solve 1st-stage LP									
Evaluation of scenarios									
Optimize Optimize									
Show details?									
O Yes 💿 No									
Maximum number of iterations 200									
Random number seed 7200 OK									
X tolerance 10 - 1									

We use the "Stochastic Decomposition" method of Higle & Sen, which approximates Benders' decomposition.

Iteration #1

Trial X for primal s	ubpro	oblems (#1)	is						
	i	Variable	Value						
	1	X11	б	(using solution					
	2	X12	3	of the					
	5	X22	3	certainty-					
	8	X32	1	equivalent					
	9	X33	7	problem)					
Solve subproblem with new trial x (#1) : RHS = 6.96191 10.2626 7.11435 <i>(1st scenario)</i> Second-stage cost: 82.539									
Optimal dual vector:	15 2	20 25 <i>(1st</i>	dual sol'n λ)					
Newly-generated optimality	y cut	t at iterat	ion 1						
s i beta [1] [2] [3] 1 1 487.539 -15 -20 -25		[5] [6] [7] -20 -25 -15							

s is scenario #, i is dual solution #, beta is constant

Primal subproblems summary

First stage cost: 8 Second stage costs:

S	Lambda#	cost
1	1	82.539

Average second stage cost: 82.539 Total: 90.539

Solution of Master Problem

X= 6 3 0 0 3 0 0 1 7First-stage cost: 33 Estimated second-stage cost Q(X) = -12.461 Total (estimated) expected value: 20.539

Iteration #2

Trial X for primal	subprob	lems (#2) i	S
	i	Variable	Value
	3	X13	9
	6	X23	3
	9	X33	8
Solve subproblem with n Primal Subproblem Resul RHS = 6.70624 7.76	t: 354 7.568		cenario)
Second-stage cost:		- (0.1.1	1 11 0
Optimal dual vecto	r: 15 18	3 $(2^{nd} du)$	al sol'n λ)
Solve subproblem with is Primal Subproblem Resul RHS = 6.70624 7.76 Second-stage cost:	t: 354 7.568 40.0802	364	
Optimal dual vecto	r: 15 20	25 ($1^{st} \wedge a$)	gain!)

Newly-generated optimality cut at iteration 2

S	i	beta	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	
1	1	487.539	-15	-20	-25	-15	-20	-25	-15	-20	-25	
2	1	445.08	-15	-20	-25	-15	-20	-25	-15	-20	-25	
S	is	scenario	o #,	i is	s dua	al so	olut	ion (‡, be	eta :	is c	onstant

Aggregate cut:

beta	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
466.31	-15	-20	-25	-15	-20	-25	-15	-20	-25

Primal subproblems summary

First stage cost: 33 Second stage costs:

S	Lambda#	cost
1	1	-12.4610
2	1	40.0802

Average second stage cost: 13.8096 Total: 46.8096

Solution of Master Problem

X= 0 0 9 0 0 3 0 0 8
First-stage cost: 33
Estimated second-stage cost Q(X) = -12.461
Total (estimated) expected value: 20.539

Iteration #3

Trial	Х	for	primal	subpr	oble	ems	(#2)	is	
					i	Var	riable	5	Value
					3	X13	3		9
					6	X23	3		3
					9	X33	3		8
 le	1	- 7		<u></u>	- 1 -	/ 1	1 <u>0</u>) .		

```
Solve subproblem with new trial x (#2) :

Primal Subproblem Result:

RHS = 5.48475 5.35459 13.8181 (3<sup>rd</sup> scenario)

Second-stage cost: 160.108

Optimal dual vector: 15 18 3 (2<sup>nd</sup> \lambda again!)
```

Newly-generated optimality cut at iteration 3

<u>s i beta [1] [2] 3] [4] [5] 6] [7] [8] 9]</u> 1 2 310.498 -15 -18 -3 -15 -18 -3 -15 -18 -3 2 2 263.043 -15 -18 -3 -15 -18 -3 -15 -18 -3 3 2 220.108 -15 -18 -3 -15 -18 -3 -15 -18 -3 s is scenario #, i is dual solution #, beta is constant

Aggregate cut: <u>beta [1] [2] 3] [4] [5] 6] [7] [8] 9]</u> 264.55 -15 -18 -3 -15 -18 -3 -15 -18 -3

Primal subproblems summary

First stage cost: 33 Second stage costs:

S	Lambda#	cost
1	2	203.043
2	2	250.498
3	2	160.108

Average second stage cost: 204.55 Total: 237.55

Solution of Master Problem

```
X= 0 0 9 0 0 3 0 0 8
First-stage cost: 18.3896
Estimated second-stage cost Q(X) = 30.394
Total (estimated) expected value: 48.7836
...etc.
```

Summary of 200 iterations

```
Stochastic Decomposition
Random number seed used in computation: 7200
Lower bound used in updating old cuts: 0
Method: Subproblems solved approximately
Tolerance for distinguishing first-stage solutions X:
1.0E - 1
# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 397
# first-stage solutions generated: 79
Best solution found is #68 with estimated cost 46.3373
23 second-stage problems were solved using this X
# second-stage dual solutions generated: 16
```

Evaluation of trial solution # 68

i	variable	X[i]
1	X11	6.566589
2	X12	2.433411
5	X22	3.000000
8	X32	0.338095
9	X33	7.661905

(Using optimality cuts as approximation of expected second-stage cost.)

First stage objective:	5.54
Expected second stage objective:	41.48
Total:	47.03

(Using expected second-stage costs appro	oximated
by restriction to 16 recorded dual sol	utions.)
First stage objective:	5.54
Expected second stage objective:	40.07
Total:	45.61

(Using 23 evaluations of second-stage costs.)
First stage objective: 5.54
Expected second stage objective: 33.85
Total: 39.39

Plot of upper & lower "bounds"

Plot of variables X12 & X32 vs iteration

Plot of the randomly-generated right-hand-sides of constraints 1&2

Suppose we were to evaluate the 1^{st} stage solutions by solving an LP:

(Same random number seed is used so that same scenarios will be generated.)

Summary

```
Stochastic Decomposition
Random number seed used in computation: 7200
Lower bound used in updating old cuts: 0
Method: Subproblems solved exactly
Tolerance for distinguishing first-stage solutions:1.0E-1
# iterations (= # right-hand-sides sampled): 200
# second-stage problems solved: 5330
# first-stage solutions generated: 73
Best solution found is #1 with estimated cost 47.4702
200 second-stage problems were solved using this X
# second-stage dual solutions generated: 18
```

Evaluation of trial solution # 1

i	variable	X[i]
1	X11	б
2	X12	3
5	X22	3
8	X32	1
9	X33	7

(Using optimality cuts as approximation of expected second-stage cost.)

First stage objective:	8.00
Expected second stage objective:	82.54
Total:	90.54

(Using expected second-stage costs a	pproximated
by restriction to 18 recorded dual	solutions.)
First stage objective:	8.00
Expected second stage objective:	45.67
Total:	53.67

(Using 200 evaluations of second-stage costs.) First stage objective: 8.00 Expected second stage objective: <u>39.47</u> Total: 47.47 We'll try 500 iterations with a different random number seed:

```
Stochastic Decomposition
```

```
Random number seed used in computation: 7179
Lower bound used in updating old cuts: 0
Method: Subproblems solved approximately
Tolerance for distinguishing first-stage solutions: 1.0E-1
```

```
# iterations (= # right-hand-sides sampled): 500
# second-stage problems solved: 994
```

```
# first-stage solutions generated: 93
Best solution found is #92 with estimated cost 50.5342
309 second-stage problems were solved using this X
```

second-stage dual solutions generated: 18

Evaluation of trial solution # 92

i	variable	X[i]
1	X11	6.51181
2	X12	2.48819
5	X22	3.00000
9	X33	8.00000

Using optimality cuts as approximation of expected second-stage cost:

First stage objective:	4.98
Expected second stage objective:	49.42
Total:	54.40

Using expected second-stage costs ap	pproximated			
by restriction to 18 recorded dual solutions:				
First stage objective:	4.98			
Expected second stage objective:	44.26			
Total:	49.24			

Using 309 evaluations of second-stage costs: First stage objective: 4.98 Expected second stage objective: <u>43.91</u> Total: 48.88