

Stochastic Transportation Problem

*non-simple recourse
normally-distributed demand*

Stochastic Decomposition

© D.L.Bricker, 2002
Dept of Mechanical & Industrial Engineering
The University of Iowa

DATA

Stochastic Transportation

First-stage data:

A, B=

$$\begin{array}{cccccccccc} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & = 9 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & = 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & = 8 \end{array}$$

i	variable	cost
1	X11	0
2	X12	2
3	X13	3
4	X21	2
5	X22	0
6	X23	2
7	X31	3
8	X32	2
9	X33	0

Objective: Minimize

Second-stage data

Costs:

i	variable	q	
1	Y12	6	
2	Y13	10	
3	Y21	6	
4	Y23	15	
5	Y31	12	
6	Y32	15	
7	EX1	-4	<- excess
8	EX2	-4	supply
9	EX3	-2	
10	SH1	15	<- shortage
11	SH2	20	of supply
12	SH3	30	

Technology matrix T

(coefficients of X in 2nd stage) =

$$\begin{matrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{matrix}$$

Technology matrix W

(coefficients of Y in 2nd stage) =

$$\begin{matrix} -1 & -1 & 1 & 0 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 1 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & 1 \end{matrix}$$

(Only the right-hand-side vector is random!)

Right-hand-sides in second stage =

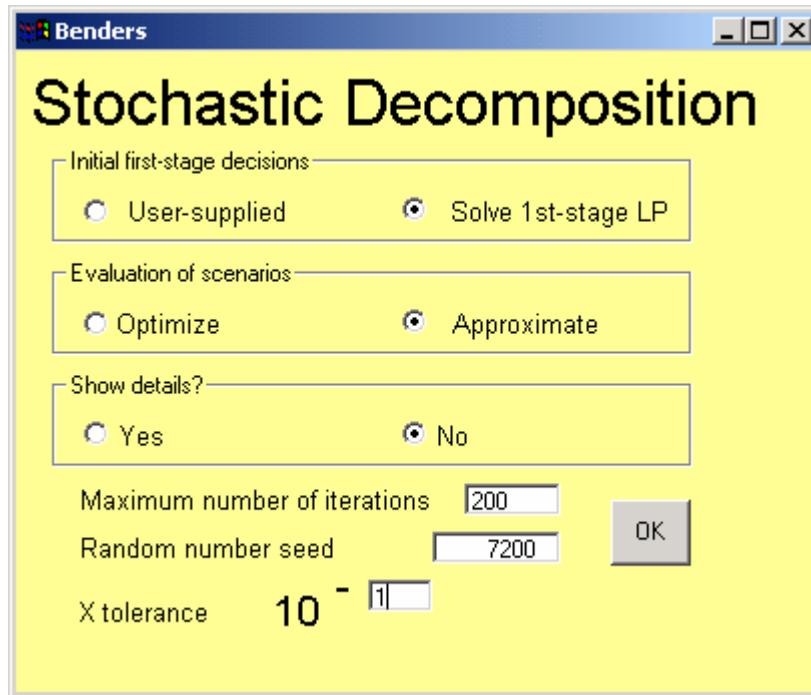
i	mean	std dev	
1	6	2	<i>random</i>
2	7	2	<i>demands</i>
3	7	3	

Certainty-Equivalent Tableau

Using expected values for right-hand-sides

b	z	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	10	11	12
0	1	0	2	3	2	0	2	3	2	0	6	10	6	15	12	15	-4	-4	-2	15	20	30
9	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	0	0	1	0	0	1	0	0	-1	-1	1	0	1	0	-1	0	0	1	0	0
7	0	0	1	0	0	1	0	0	1	0	1	0	-1	-1	0	1	0	-1	0	0	1	0
7	0	0	0	1	0	0	1	0	0	1	0	1	0	1	-1	-1	0	0	-1	0	0	1

Optimal Solution


Total objective function: 8

Stage One: nonzero variables:

i	variable	value
1	X11	6
2	X12	3
5	X22	3
8	X32	1
9	X33	7

Second Stage: nonzero variables

i	variable	value
--none--		

We use the “Stochastic Decomposition” method of Higle & Sen, which approximates Benders’ decomposition.

Iteration #1

Trial X for primal subproblems (#1) is

i	Variable	Value
1	X11	6
2	X12	3
5	X22	3
8	X32	1
9	X33	7

(using solution
of the
certainty-
equivalent
problem)

Solve subproblem with new trial x (#1) :

RHS = 6.96191 10.2626 7.11435 (1st scenario)

Second-stage cost: 82.539

Optimal dual vector: 15 20 25 (1st dual sol'n λ)

Newly-generated optimality cut at iteration 1

s	i	beta	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
1	1	487.539	-15	-20	-25	-15	-20	-25	-15	-20	-25

s is scenario #, i is dual solution #, beta is constant

Primal subproblems summary

First stage cost: 8

Second stage costs:

s	Lambda#	cost
1	1	82.539

Average second stage cost: 82.539

Total: **90.539**

Solution of Master Problem

X= 6 3 0 0 3 0 0 1 7

First-stage cost: 33

Estimated second-stage cost $Q(X) = -12.461$

Total (estimated) expected value: 20.539

Iteration #2

Trial X for primal subproblems (#2) is

i	Variable	Value
3	X13	9
6	X23	3
9	X33	8

Solve subproblem with new trial x (#2) :

Primal Subproblem Result:

RHS = 6.70624 7.76354 7.56864 (2nd scenario)

Second-stage cost: 203.043

Optimal dual vector: 15 18 3 (2nd dual sol'n λ)

Solve subproblem with incumbent solution (#1) :

Primal Subproblem Result:

RHS = 6.70624 7.76354 7.56864

Second-stage cost: 40.0802

Optimal dual vector: 15 20 25 (1st λ again!)

Newly-generated optimality cut at iteration 2

s	i	beta	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
1	1	487.539	-15	-20	-25	-15	-20	-25	-15	-20	-25
2	1	445.08	-15	-20	-25	-15	-20	-25	-15	-20	-25

s is scenario #, i is dual solution #, beta is constant

Aggregate cut:

beta	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
466.31	-15	-20	-25	-15	-20	-25	-15	-20	-25

Primal subproblems summary

First stage cost: 33

Second stage costs:

s	Lambda#	cost
1	1	-12.4610
2	1	40.0802

Average second stage cost: 13.8096

Total: 46.8096

Solution of Master Problem

$X = 0 \ 0 \ 9 \ 0 \ 0 \ 3 \ 0 \ 0 \ 8$

First-stage cost: 33

Estimated second-stage cost $Q(X) = -12.461$

Total (estimated) expected value: 20.539

Iteration #3

Trial X for primal subproblems (#2) is

i	Variable	Value
3	X13	9
6	X23	3
9	X33	8

Solve subproblem with new trial x (#2) :

Primal Subproblem Result:

RHS = 5.48475 5.35459 13.8181 (3rd scenario)

Second-stage cost: 160.108

Optimal dual vector: 15 18 3 (2nd λ again!)

Newly-generated optimality cut at iteration 3

s	i	beta	[1]	[2]	3]	[4]	[5]	6]	[7]	[8]	9]
1	2	310.498	-15	-18	-3	-15	-18	-3	-15	-18	-3
2	2	263.043	-15	-18	-3	-15	-18	-3	-15	-18	-3
3	2	220.108	-15	-18	-3	-15	-18	-3	-15	-18	-3

s is scenario #, i is dual solution #, beta is constant

Aggregate cut:

beta	[1]	[2]	3]	[4]	[5]	6]	[7]	[8]	9]
264.55	-15	-18	-3	-15	-18	-3	-15	-18	-3

Primal subproblems summary

First stage cost: 33

Second stage costs:

s	Lambda#	cost
1	2	203.043
2	2	250.498
3	2	160.108

Average second stage cost: 204.55

Total: 237.55

Solution of Master Problem

X= 0 0 9 0 0 3 0 0 8

First-stage cost: 18.3896

Estimated second-stage cost $Q(X) = 30.394$

Total (estimated) expected value: 48.7836

...etc.

Summary of 200 iterations

Stochastic Decomposition

Random number seed used in computation: 7200

Lower bound used in updating old cuts: 0

Method: Subproblems solved approximately

Tolerance for distinguishing first-stage solutions X:
1.0E-1

iterations (= # right-hand-sides sampled): 200
second-stage problems solved: 397

first-stage solutions generated: 79
Best solution found is #68 with estimated cost 46.3373
23 second-stage problems were solved using this X

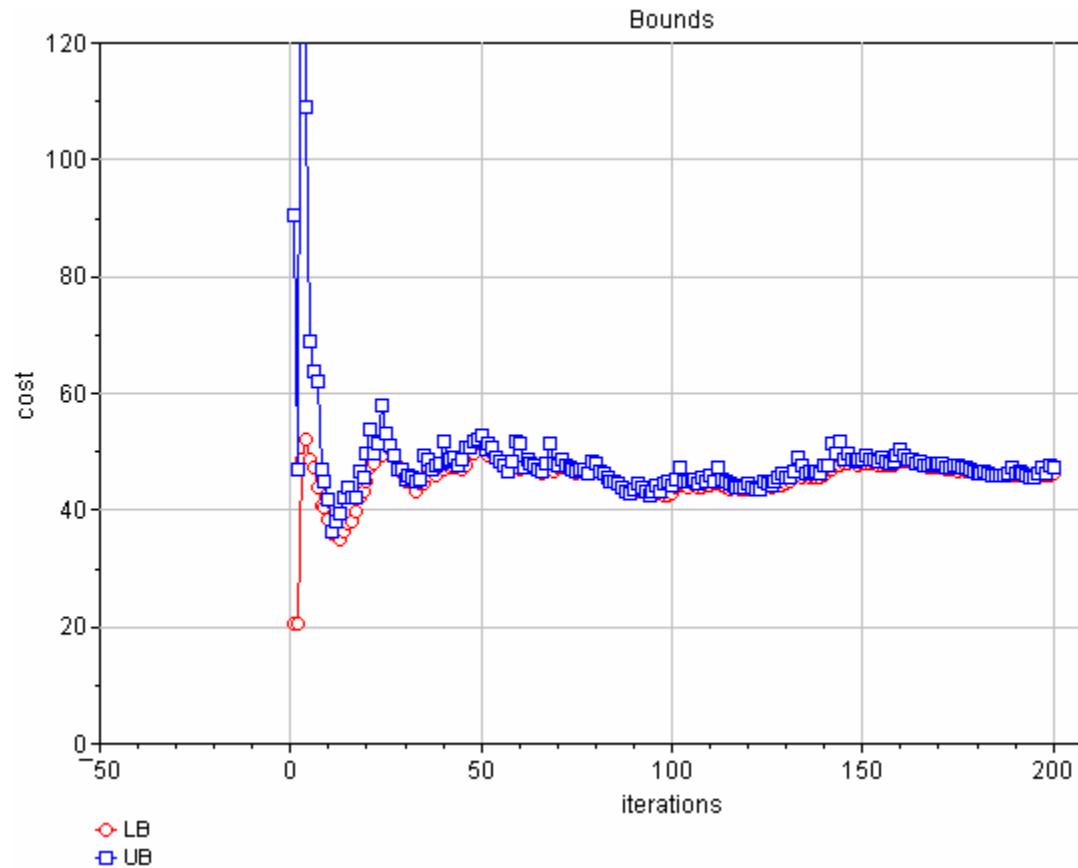
second-stage dual solutions generated: 16

Evaluation of trial solution # 68

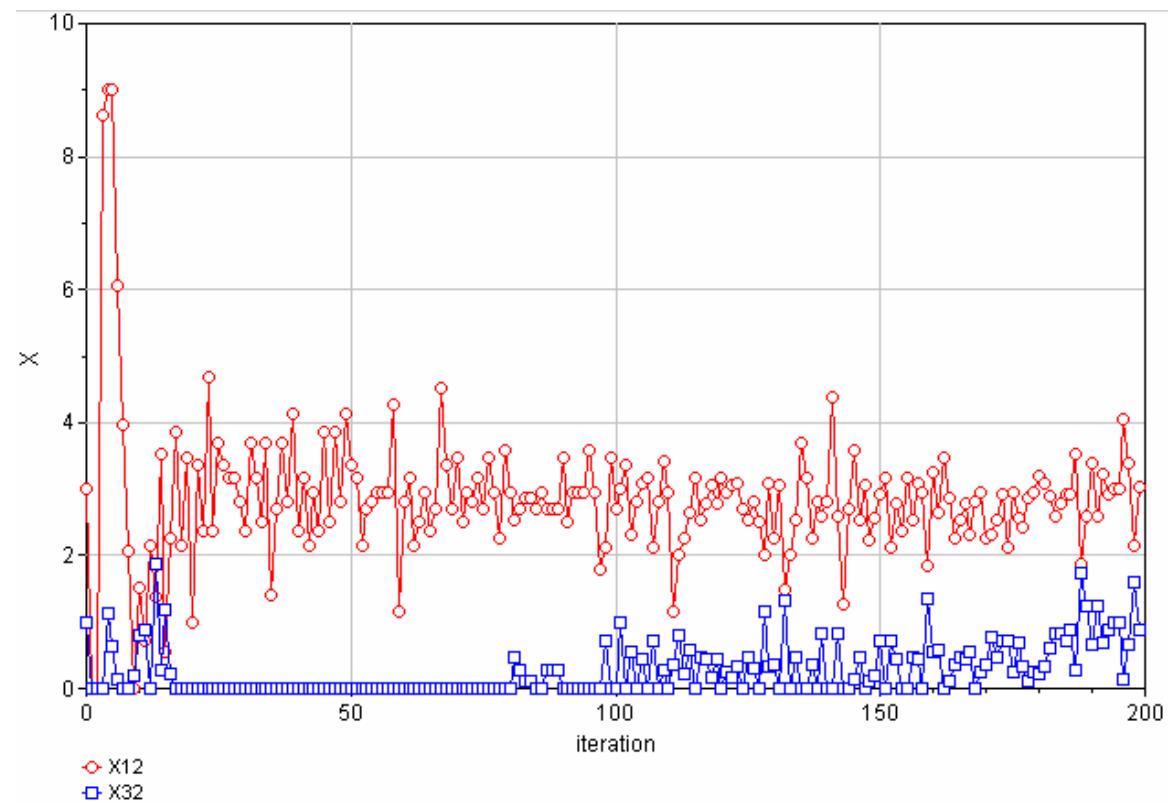
i	variable	x[i]
1	X11	6.566589
2	X12	2.433411
5	X22	3.000000
8	X32	0.338095
9	X33	7.661905

(Using optimality cuts as approximation of expected second-stage cost.)

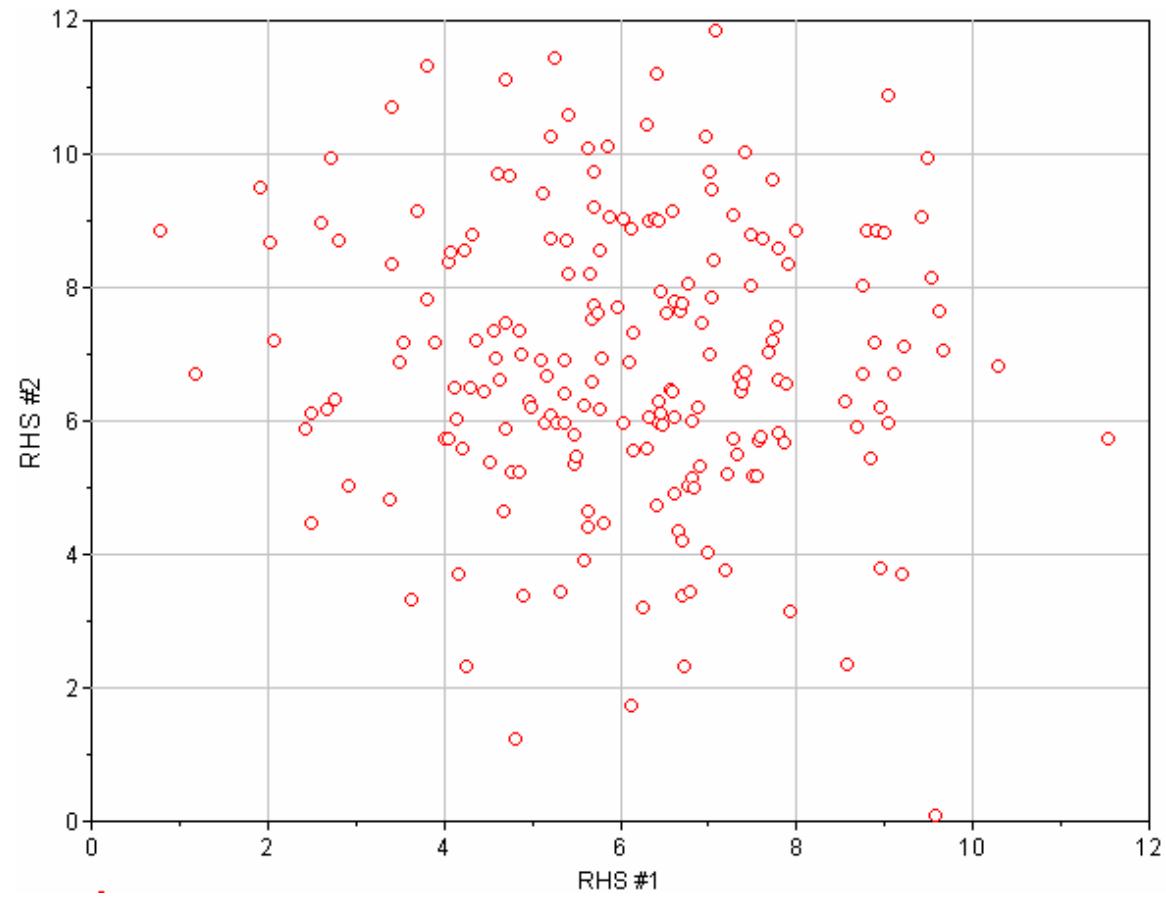
First stage objective:	5.54
Expected second stage objective:	41.48
Total:	47.03

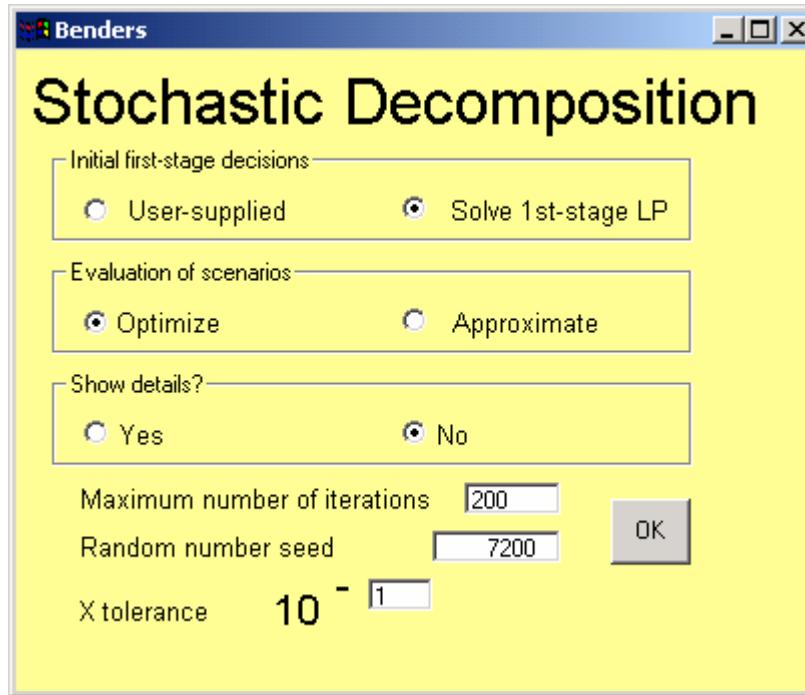

(Using expected second-stage costs approximated by restriction to 16 recorded dual solutions.)

First stage objective:	5.54
Expected second stage objective:	40.07
Total:	45.61


(Using 23 evaluations of second-stage costs.)

First stage objective:	5.54
Expected second stage objective:	33.85
Total:	39.39


Plot of upper & lower “bounds”


Plot of variables X_{12} & X_{32} vs iteration

Plot of the randomly-generated right-hand-sides of constraints 1&2

Suppose we were to evaluate the 1st stage solutions by solving an LP:

(Same random number seed is used so that same scenarios will be generated.)

Summary

Stochastic Decomposition

Random number seed used in computation: 7200

Lower bound used in updating old cuts: 0

Method: **Subproblems solved exactly**

Tolerance for distinguishing first-stage solutions: 1.0E-1

iterations (= # right-hand-sides sampled): 200

second-stage problems solved: 5330

first-stage solutions generated: 73

Best solution found is #1 with estimated cost 47.4702

200 second-stage problems were solved using this x

second-stage dual solutions generated: 18

Evaluation of trial solution # 1

i	variable	X[i]
1	X11	6
2	X12	3
5	X22	3
8	X32	1
9	X33	7

(Using optimality cuts as approximation of expected second-stage cost.)

First stage objective:	8.00
Expected second stage objective:	82.54
Total:	90.54

(Using expected second-stage costs approximated by restriction to 18 recorded dual solutions.)

First stage objective:	8.00
Expected second stage objective:	45.67
Total:	53.67

(Using 200 evaluations of second-stage costs.)

First stage objective:	8.00
Expected second stage objective:	39.47
Total:	47.47

We'll try 500 iterations with a different random number seed:

Stochastic Decomposition

Random number seed used in computation: 7179

Lower bound used in updating old cuts: 0

Method: **Subproblems solved approximately**

Tolerance for distinguishing first-stage solutions: 1.0E-1

iterations (= # right-hand-sides sampled): 500

second-stage problems solved: 994

first-stage solutions generated: 93

Best solution found is #92 with estimated cost 50.5342

309 second-stage problems were solved using this x

second-stage dual solutions generated: 18

Evaluation of trial solution # 92

i	variable	x[i]
1	X11	6.51181
2	X12	2.48819
5	X22	3.00000
9	X33	8.00000

Using optimality cuts as approximation of expected second-stage cost:

First stage objective:	4.98
Expected second stage objective:	49.42
Total:	54.40

Using expected second-stage costs approximated by restriction to 18 recorded dual solutions:

First stage objective:	4.98
Expected second stage objective:	44.26
Total:	49.24

Using 309 evaluations of second-stage costs:

First stage objective:	4.98
Expected second stage objective:	43.91
Total:	48.88