"A Cross-Decomposition Algorithm
for Two-Stage Stochastic
Linear Programming
with Recourse"
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Abstract: We consider a paradigm of linear optimization in the face of
uncertainty, in which (first-stage) decisions must be made before the uncertainty
is resolved, and then recourse (second-stage decisions) is available to
compensate. When a finite set of scenarios can be identified and their probability
estimated, and the objective is to minimize the sum of the first-stage cost and the
expected value of the second-stage cost, a (generally large) deterministic
equivalent LP problem can be constructed. Benders' (primal) decomposition
and Lagrangian (dual) decomposition each yields a family of smaller
subproblems, one for each scenario, and a coordinating "master" problem. Cross-
decomposition is a hybrid primal-dual iterative approach which eliminates the
master problems and uses the primal and dual subproblems to provide both
upper and lower bounds on the optimal expected cost at each iteration. A small
example illustrates the computation.
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EXAMPLE

¢ A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting
season he wants to decide how much land to devote to each crop.

¢ At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be
purchased from a wholesaler if not raised on the farm.

¢ Any grain in excess of the cattle feed requirement can be sold at $170 and $150 per ton of
wheat and corn, respectively.

¢ The wholesaler sells the grain for 40% more (namely $238 and $210 per ton,
respectively.)

¢ Up to 6000 tons of sugar beets can be sold for $36 per ton; any additional amounts can be

sold for $10/ton.
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DATA

Wheat Corn Sugar Beets

Average Yield 25T/Acre 3 T/Acre 20T/ Acre

Planting cost $150/ Acre  $230/Acre  $260/ Acre

Selling price $170/T $150/T $36/T first 6000T
$10/T otherwise

Purchase price $238/T $210/T

Minimum Rqmt  200T 240T
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DECISION VARIABLES

We distinguish between two types of decisions:
First stage (before growing season):
x; = acres of land planted in wheat
X, = acres of land planted in corn
x3 = acres of land planted in beets
Second stage (after harvest):
wi = tons of wheat sold
w; = tons of corn sold
w3 = tons of beets sold at $36/T
w, = tons of beets sold at $10/T
y; = tons of wheat purchased

y, = tons of corn purchased
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LINEAR PROGRAMMING MODEL
Minimize 150x, +230x, +260x; +238y, —170w, +210y, 150w, =36w, 40w,
subject to

x, +x, +x;, <500
2.5x,+y, —w 2200
3x, +y, —w, 2240
w, +w, <20x,
w, <6000
x,20,1=1,2,3; y, 20,1=1,2; w, 20,1=1,2,3,4
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OPTIMAL SOLUTION

Profit = $118,600

Wheat Corn Sugar Beets
Plant 120 Acres 80 Acres 300 Acres
Yield 300T 240T 6000T
Sales 100T - 6000T
Purchase |-- -- --
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In actuality, crop yields are uncertain, depending upon weather conditions
during the growing season.
Three scenarios have been identified

¢ "good" (20% higher than average)

¢ "fair" (average)

¢ "bad" (20% below average),

each equally likely:
Scenario Wheat yield  Corn yield Beet yield
k (tons/acre) (tons/acre) (tons/acre)
1. Good 3 3.6 24
2. Fair 25 3 20
3. Bad 2 2.4 16
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Scenario #1: "Good" Yield: Optimal Profit = $167,667

Wheat Corn Sugar Beets
Plant 183.333 Acres 66.67 Acres 250 Acres
Yield 550T 240T 6000T
Sales 350T - 6000T
Purchase |-- -- --
Scenario #3: "Bad" Yield: Optimal Profit = $59,950
Wheat Corn Sugar Beets

Plant 100 Acres 25 Acres 375 Acres

Yield 200T 60T 6000T

Sales - - 6000T

Purchase |-- -- --

If a perfect forecast was available, then, the expected profit would be

1 1 1 _
1 x8167,667 + 1/ x$118,600 + 1/, x859,950 =$115,406
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The stochastic decision problem is to optimize the first-stage cost plus the expected
second-stage costs:

3
Minimize 150, +230x, +260x, + 14> 0, (x)
k=1

subject to x; +x, +x, <500
x;20,j=1,2,3

where

0, (x) = second-stage costs in scenario k, if first-stage decisions x have been
implemented
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O, (x) =Minimum 170w, +150w, +36w, +10w, =238y, —210y,
s.t. y, —w, 2200 -3,
y, —w, 2240- 3.4,
w, +w, <24x,
»20,y,20,w,20,w,20, 0<sw, <6000,w, 20

0O, (x) =Minimum 170w, +150w, +36w, +10w, =238y, —210y,
s.t.y, —w, 2200- 2.5,
y, —w, 2240- 3,
w, +w, <20x,
»20,y,20,w,20,w,20, 0w, <6000,w, 20

O, (x) = Minimum 170w, +150w, +36w, +10w, —238y, —210y,
s.t.y, —w, 2200 -2,
y, —w, 2240 - 2.4,
w, +w, <16x,
»20,y,20,w,20,w,20, 0w, <6000,w, 20
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TWO-STAGE LINEAR PROGRAMMING WITH RECOURSE

Minimize z = cx + E[minq (a))y (a’)]

subject to
Ax=b
T(w)x+Wy(w) =h(w),
x=20,y a)) > ()
where

x = first-stage decision
and

y(a;) = second-stage decision after random event & is observed

which must satisfy the second-stage constraints
T(w)x+Wy(w) =h(w),

where q(a;), T (Cu) & h(Co) are random variables
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DETERMINISTIC EQUIVALENT PROBLEM

Assume a finite number of scenarios.

For each scenario k, define a set of second-stage variables, yk , and arrays 7, ¢, , and A,

The objective is to minimize the expected total costs of first and second stages

Minimize cx + ZK: 0,0, (x)

k=1
subject to x L1 X

where the cost of the second stage is

0, (x) = Minimum {qky Wy =h -T,x,y 2(}
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Consider the deterministic LP derived from the 2-stage stochastic LP:

K
Z =mincx +Zpquyk

k=1

subject to

Tx+W" =h k =1,...K;
xOX

yk >0,k =1,...K

where the feasible set of first-stage decisions i1s defined by

X:{xDR”:Ax: b, 0}
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EXAMPLE:

Second stage decisions:

For each scenario k (k=1,2,3), define a set of decision variables:

w'= tons of wheat sold

w, = tons of corn sold

wi = tons of beets sold at $36/T
w} = tons of beets sold at $10/T
y*= tons of wheat purchased

yé‘ = tons of corn purchased
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DETERMINISTIC EQUIVALENT LP:

3
+ 12(238y7 170w} +210y] ~150w ~36w3 ~10w;)

Minimize 150x, + 230x, + 260x, +y(238y11 ~170w] +210y, =150w, ~36w} ~10w})

+%(238y13 170w} +210y; ~150w; ~36w; —10w;)

subject to
x, +x, +x;, <500

Scenario 1 cenario 2 cenario 3
3x,+y, —w 2200 2.5x, +y. —w’ =200 2x +y’ —-w =200
3.6x,+y, —w, 2240 3x,+y, —wi =240 2.4x,+y, —w, =240

24x, —wy —w, =0 20x, —wi —w; =0 16x, —w; —w;, =0
w; < 6000 w; <6000 w; <6000
x 20,i=1.2,3;

yi=20,i=1,2 & k=1,2,3;
wi>0,i=1,2,3,4 & k=1,2,3

Thus, all possible second-stage decisions are made simultaneously, in a single large LP.
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Optimal Solution: Expected profit= $108,390

Wheat Corn Sugar Beets
First stage Plant: 170 Acres 80 Acres 250 Acres
k=1 Yield 510 T 288 T 6000 T
"Good yield" |Sales 310 T 48 T 6000 T
Purchase -- -- --
k=2 Yield 425 T 240 T 5000 T
"Fair yield" | Sales 225T - 5000 T
Purchase -- --
k=3 Yield 340 T 192 T 4000 T
"Bad yield" Sales 140 T -- 4000 T
Purchase -- 48 T --

¢ Using the original solution (where expected values of yields were assumed, 1.e.,

planting 120 acres of wheat, 80 acres of corn, & 300 acres of beets) his expected profit

would be $107,240 (which is $1,150 less than the optimal expected value) .

¢ The Expected Value of Perfect Information is $115,406 - $108,390 = $7016
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LAGRANGIAN DECOMPOSITION:
"SPLITTING" FIRST-STAGE VARIABLES
For each scenario k, define a first-stage decision x* which must equal the original first-
stage decision (which we now denote by x"). We can then write the equivalent LP:

K
Z =mincx, + Zpquyk

k=1

subject to

XOX

In order to separate the LP by scenario, we need to "relax" the constraints

¥ =x"k=1,..K;
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LAGRANGIAN RELAXATION

Given a family of Lagrangian multiplier vectors Ay, k=1,...K, we define the relaxation:
K K
D(A) =mincx’ +Zpquyk +Z/]k (xk —xo)
k=1 k=1

subject to ' OX
T.x" +Wy* =h_k =1,...K;
x*20,k =1,...K; y"20,k=1,2,.K

That is,

D(A)= min(c —ZK:/]ijo +ZK:[/]kxk +pquyk]
k=1 k=1

subject to the above constraints.
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This is motivated by the fact that the problem then separates into K+1 subproblems:

D(A)=D, (4. Ac) + 3.0, (4)

where

D, (A) = min(c —ZK:/]k)xo

subject to x’ O X

and, for each k=1, .. K:
D, (/]) =minA,x" +p,q,»"
subject to T, x* +Wy* =h,

XkZO; ykZO
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Dual Subproblem 0 Dual Subproblem for
for 1% Stage Scenario k, k=1, ...K
K : k k
min(c—Z/]k\xO Min /]kx t Dy
k=1 subject to
k ko_
subject to x’ O X Lx"+Wy" =h,
x>0,y =20
K
The value D (/]) =D, (/]1 yer A K) + ZDk (/] k) provides a lower bound on the optimal
k=1

cost Z.

The Lagrangian dual problem is to select the multipliers which will produce the tightest

such lower bound:

D =max D (/] )
p
Note: In the linear case, D = Z and there is no "duality gap".
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Discrepancies x0 - xk

Master Problem:
Adjust multipliers A

Lagrangian Subproblems:
Dk(A), k=0,1,..K

y

Yes
Converged? | — STOP

‘No
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BENDERS' DECOMPOSITION

Benders' partitioning (commonly known in stochastic programming as the "L-Shaped

Method") achieves separability of the second stage decisions, but in a different manner.

Given a first-stage decision xo, solve for each scenario k=1, ...K the second-stage LP:
B (xo) =ming, y"
subjectto Wy* =h, —T x" y* =0

k
Then P (xo) =cx’ + Z p. b (xo) provides us with an upper bound on the optimal cost
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Furthermore, solving each LP provides us with a vector A, of dual variables

. . 0 _ k
corresponding to the constraints x~ = x.

If 1% 1s the dual solution of the LP
B (xo) =ming, y"
subjectto Wy* =h, =T, x" y* =0

then A, = =T, 71,
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An aside: Computing A, :
The dual of
Min g, '
subject to
Tx" +Wy* =h,,
X =0,
x*=0
is the LP
Max h, 71, + x°A,
subject to:

T, +14 =0
w'm <q,

If we eliminate A, using the equality constraint, we obtain A, = =T, 71, and the dual LP
Max (hk -7 x° ) 71,
subject to
w'm <q,
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The original problem now is seen to be equivalent to
K
Min cx” + Zkak (xo)
k=1

subjectto x’ 0 X

By making use of dual information obtained after M evaluations of B, (xo ), Benders'

procedure forms an approximation (a convex piecewise-linear function) of B, (xo ):
0 i 0 i
B (x")z max (@’ + B

so that the original problem reduces (with introduction of new variables &, )to

K
Min cx” + Zp,ﬁk
k=1
subject to x’ O X
and

6, zax’+p,i=1,.M; k=1,..K
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That is, we have approximated B, (xo) by the maximum of a finite number of linear

functions, i.e., by a piecewise-linear convex function:
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Benders’ Master Problem:
| Select first-stage decisions x9

x0

y

Benders’ Subproblems:
Solve Py(x9), k=1,2...K

Lagrangian multipliers A

' Yes
Converged? |— STOP

No
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In either the Lagrangian relaxation approach or Benders' decomposition, the burden of
the computation lies in the respective master problems: searching for the optimal A in the
case of Lagrangian relaxation, & searching for the optimal x’ in the case of Benders'

decomposition.

The subproblems, being LPs separable by scenario, are easily solved in comparison.
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Benders’ Master Problem:

| Select first-stage decisions x9 —> Ma.ster Prob}e;n:
Adjust multipliers A

x0

A

Benders’ Subproblems:

Solve P(x0), k=1.2,..K Lagrangian Subproblems:

Dk(M), k=0,1,..K

Yes l Yes

No

Discrepancies xV - xk

Lagrangian multipliers A

STOP

No
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CROSS-DECOMPOSITION

Cross-decomposition is a hybrid of Benders' decomposition and Lagrangian relaxation, in
which the subproblem of each algorithm serves the purpose of the master problem of the
other.

That is, Benders' subproblem receives the first-stage decisions x” from the Dual

subproblem Dy rather than from the Benders' master problem.

Primal Subproblem for Information Dual Subproblem 0 for
Scenario k exchange I* Stage
Min ¢ . =
Py _ Min C—Z/]k\xo
subject to 0 2] —
k — 70
Wy = (hk I x ) L subject to
k 0
>0 d
% ” fixed) o0y

Likewise, the Dual subproblem D, receives the necessary multipliers A from the

Benders' subproblem, rather than from the Dual master problem.
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CROSS-DECOMPOSITION

Note that the algorithm can be "streamlined"-- only one of the dual subproblems Dy(A)

needs to be solved at each iteration, except when the termination criterion
P(x')-D(A)se

1s to be tested.

) A
Benders | Lagrangian
Subproblems: Subproblems:
Solve P(x?),k=1.2,..K X0 Di(A\), k=0,1,.K
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MEAN VALUE CROSS DECOMPOSITION

Convergence i1s improved if the mean of all previously generated Lagrangian multipliers
and first-stage decisions are sent to the Lagrangian and Benders' subproblems,

respectively.

Benders’ A Averave A Lagrangian
Subproblems: > 86— Subproblems:
Solve Py(xY), Solve Dg(M),
k=12,.K « Average |4 k=0,1,..K

X0 X0
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EXAMPLE

The cross-decomposition algorithm described above was implemented in the APL
language (APL+WIN 3.0). First, the mean of all prior primal & dual solutions was used
at each iteration. The result after 100 iterations was as follows:

Total cost: 106456.94, found at iteration #72

Best | ower bound: 110752.17
Gap= 4295.23, or 4.03%

| X[i]

A WOWN PR
N
o1
o
o
o
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The plot of upper & lower bounds at each iteration :
100000

50000+

0-

~500004

cost

100000 4
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20

200000
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The mean values of first-stage variables used in the primal subproblems at each iteration.

200
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-
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iteration
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iteration
400
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1] 20 40 G0 a0 100
iteration
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As an alternative, exponential smoothing (with smoothing factor 10%) was used for both
primal and dual solutions. After 100 iterations, the following was the best solution

found:

Total cost: 108210.7881, found at iterati on #68
Best | ower bound: 111187. 0364
Gap= 2976. 24833, or 2.750417387%

[ X[i]

A OWDNPE
N
(o))
o
(00]
\I

This solution is very nearly optimal. (Optimal solution is —$108390.)
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RESEARCH ISSUES

1. Given that the number of scenarios is extremely large (or probability distributions are continuous
and not discrete), how does one do "sampling" of scenarios in the cross-decomposition algorithm?

2. How can the cross-decomposition algorithm be extended to multi-(i.e., greater than 2) stages?

3. Given uncertainty in the parameters of the probability distributions describing future scenarios,
perhaps it is not appropriate to continue iterations until the duality gap between upper & lower
bounds is nearly zero-- can we determine an appropriate gap between upper & lower bound for a
termination criterion for the cross-decomposition algorithm?

4. Case of integer first-stage decisions.

¢ The Lagrangian subproblems Dy(A) for scenarios k=1,...K are now mixed-integer LP
problems, which are substantially more difficult to solve.

¢ The computational savings obtained by solving only the Lagrangian subproblem Dy(A) and not
the Lagrangian subproblems Dy(A) for scenarios k=1,...K at every iteration become more
significant!

+ The Lagrangian subproblems Dy(A) for scenarios k=1,...K may occasionally be solved, in
order to test the duality gap as a termination criterion. How can information about the dual
variables gathered from Benders' subproblems be accumulated in order to construct a Benders'
master problem for each individual D\(A)?
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