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"A Cross-Decomposition Algorithm
for Two-Stage Stochastic

Linear Programming
with Recourse"
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Abstract: We consider a paradigm of linear optimization in the face of
uncertainty, in which (first-stage) decisions must be made before the uncertainty
is resolved, and then recourse (second-stage decisions) is available to
compensate.  When a finite set of scenarios can be identified and their probability
estimated, and the objective is to minimize the sum of the first-stage cost and the
expected value of the second-stage cost, a (generally large) deterministic
equivalent LP problem can be constructed.    Benders' (primal) decomposition
and Lagrangian (dual) decomposition each yields a family of smaller
subproblems, one for each scenario, and a coordinating "master" problem.  Cross-
decomposition is a hybrid primal-dual iterative approach which eliminates the
master problems and uses the primal and dual subproblems to provide both
upper and lower bounds on the optimal expected cost at each iteration.   A small
example illustrates the computation.



X-Decomposition of Stochastic LP 05/01/02 page 3

EXAMPLE

♦ A farmer raises wheat, corn, and sugar beets on 500 acres of land.  Before the planting

season he wants to decide how much land to devote to each crop. 

♦ At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be

purchased from a wholesaler if not raised on the farm. 

♦ Any grain in excess of the cattle feed requirement can be sold at $170 and $150 per ton of

wheat and corn, respectively. 

♦ The wholesaler sells the grain for 40% more (namely $238 and $210 per ton,

respectively.) 

♦ Up to 6000 tons of sugar beets can be sold for $36 per ton; any additional amounts can be

sold for $10/ton.
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DATA

Wheat Corn Sugar Beets

Average Yield 2.5 T/Acre 3 T/Acre 20 T/Acre

Planting cost $150/Acre $230/Acre $260/Acre

Selling price $170/T $150/T $36/T  first 6000T

$10/T  otherwise

Purchase price $238/T $210/T

Minimum Rqmt 200T 240T
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DECISION VARIABLES

We distinguish between two types of decisions:
First stage (before growing season):

x1 = acres of land planted in wheat

x2 = acres of land planted in corn

x3 = acres of land planted in beets

Second stage (after harvest):

w1 = tons of wheat sold

w2 = tons of corn sold

w3 = tons of beets sold at $36/T

w4 = tons of beets sold at $10/T

y1 = tons of wheat purchased

y2 = tons of corn purchased
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LINEAR PROGRAMMINGMODEL

1 2 3 1 1 2 2 3 4Minimize 150 230 260 238 170 210 150 36 10x x x y w y w w w+ + + − + − − −

subject to

1 2 3 500x x x+ + ≤
1 1 12.5x y w+ − ≥ 200

2 2 23x y w+ − ≥ 240
3 4 320w w x+ ≤

3 6000w ≤
, i=1,2,3; , i=1,2; , i=1,2,3,4i i ix y w≥ 0 ≥ 0 ≥ 0
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OPTIMAL SOLUTION

Profit = $118,600

Wheat Corn Sugar Beets

Plant 120 Acres 80 Acres 300 Acres

Yield 300T 240T 6000T

Sales 100T -- 6000T

Purchase -- -- --
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In actuality, crop yields are uncertain, depending upon weather conditions

during the growing season. 

Three scenarios have been identified

♦ "good"  (20% higher than average)

♦ "fair"  (average)

♦ "bad" (20% below average),

each equally likely:

Scenario

k

Wheat yield

(tons/acre)

Corn yield

(tons/acre)

Beet yield

(tons/acre)

1. Good 3 3.6 24

2.  Fair 2.5 3 20

3.  Bad 2 2.4 16
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Scenario #1:  "Good" Yield:  Optimal Profit = $167,667
Wheat Corn Sugar Beets

Plant 183.333 Acres 66.67 Acres 250 Acres

Yield 550T 240T 6000T

Sales 350T -- 6000T

Purchase -- -- --

Scenario #3:  "Bad" Yield:  Optimal Profit = $59,950

Wheat Corn Sugar Beets

Plant 100 Acres 25 Acres 375 Acres

Yield 200T 60T 6000T

Sales -- -- 6000T

Purchase -- -- --

If a perfect forecast was available, then, the expected profit would be

1 1 1$167,667 $118,600 $59,950 $115,4063 3 3× + × + × =
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The stochastic decision problem is to optimize the first-stage cost plus the expected
second-stage costs:

( )
3

1 2 3
1

1Minimize 150 230 260 3 k
k

x x x Q x
=

+ + + ∑
1 2 3subject to 500x x x+ + ≤

0, j=1,2,3jx ≥

where

( )kQ x = second-stage costs in scenario k, if first-stage decisions x have been
implemented
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( )1 1 2 3 4 1 2Minimum 170 150 36 10 238 210Q x w w w w y y= + + + − −
1 1 1s.t. y w x− ≥ 200 − 3

2 2 2y w x− ≥ 240 − 3.6
3 4 324w w x+ ≤

1 20, 0y y≥ ≥ , 1 2 3 4w 0,w 0,  0 6000, 0w w≥ ≥ ≤ ≤ ≥

( )2 1 2 3 4 1 2Minimum 170 150 36 10 238 210Q x w w w w y y= + + + − −
1 1 1s.t. y w x− ≥ 200 − 2.5

2 2 2y w x− ≥ 240 − 3
3 4 320w w x+ ≤

1 20, 0y y≥ ≥ , 1 2 3 4w 0,w 0,  0 6000, 0w w≥ ≥ ≤ ≤ ≥

( )3 1 2 3 4 1 2Minimum 170 150 36 10 238 210Q x w w w w y y= + + + − −
1 1 1s.t. y w x− ≥ 200 − 2

2 2 2y w x− ≥ 240 − 2.4
3 4 316w w x+ ≤

1 20, 0y y≥ ≥ , 1 2 3 4w 0,w 0,  0 6000, 0w w≥ ≥ ≤ ≤ ≥
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TWO-STAGE LINEAR PROGRAMMING WITH RECOURSE

( ) ( )Minimize minz cx E q yω ω = +  
subject to

Ax b=
( ) ( ) ( ) ,T x Wy hω ω ω+ =

( )0, 0x y ω≥ ≥
where

x = first-stage decision

and

( )y ω = second-stage decision after random event ω is observed

which must satisfy the second-stage constraints

( ) ( ) ( ) ,T x Wy hω ω ω+ =

where ( )q ω , ( )T ω & ( )h ω are random variables
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DETERMINISTIC EQUIVALENT PROBLEM

Assume a finite number of scenarios. 

For each scenario k, define a set of second-stage variables, ky , and arrays kT , kq , and kh

The objective is to minimize the expected total costs of first and second stages

( )
1

Minimize
K

k k
k

cx p Q x
=

+∑
subject to x X∈

where the cost of the second stage is

( ) { }Minimum : ,  0k k k kQ x q y Wy h T x y= = − ≥
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Consider the deterministic LP derived from the 2-stage stochastic  LP:

1

min
K

k
k k

k

Z cx p q y
=

= +∑
subject to

, 1, ;k
k kT x Wy h k K+ = = …

x X∈
1,ky k K≥ 0, = …

where the feasible set of first-stage decisions is defined by

{ }: , 0nX x R Ax b x= ∈ = ≥
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EXAMPLE:

Second stage decisions:

For each scenario k (k=1,2,3), define a set of decision variables:

1
kw = tons of wheat sold

2
kw = tons of corn sold

3
kw = tons of beets sold at $36/T

4
kw = tons of beets sold at $10/T

1
ky = tons of wheat purchased

2
ky = tons of corn purchased
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DETERMINISTIC EQUIVALENT LP:

( )
( )
( )

1 1 1 1 1 1
1 2 3 1 1 2 2 3 4

2 2 2 2 2 2
1 1 2 2 3 4

3 3 3 3 3 3
1 1 2 2 3 4

1Minimize 150 230 260 238 170 210 150 36 103
1 238 170 210 150 36 103
1 238 170 210 150 36 103

x x x y w y w w w

y w y w w w

y w y w w w

+ + + − + − − −

+ − + − − −

+ − + − − −

subject to
1 2 3 500x x x+ + ≤

Scenario 1 Scenario 2 Scenario 3
1 1

1 1 13x y w+ − ≥ 200
1 1

2 2 23.6x y w+ − ≥ 240
1 1

3 3 424x w w− − ≥ 0
1
3 6000w ≤

2 2
1 1 12.5x y w+ − ≥ 200

2 2
2 2 23x y w+ − ≥ 240

2 2
3 3 420x w w− − ≥ 0

2
3 6000w ≤

3 3
1 1 12x y w+ − ≥ 200

3 3
2 2 22.4x y w+ − ≥ 240

3 3
3 3 416x w w− − ≥ 0

3
3 6000w ≤

k
i

0, i=1,2,3; 

0, i=1,2 & k=1,2,3;

w 0, i=1,2,3,4 & k=1,2,3

i

k
i

x

y

≥

≥

≥

Thus, all possible second-stage decisions are made simultaneously, in a single large LP.
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Optimal  Solution:  Expected profit= $108,390

Wheat Corn Sugar Beets
First stage Plant: 170 Acres 80 Acres 250 Acres
k=1
"Good yield"

Yield
Sales
Purchase

510 T
310 T
--

288 T
48 T

--

6000 T
6000 T
--

k=2
"Fair yield"

Yield
Sales
Purchase

425 T
225 T
--

240 T
--
--

5000 T
5000 T

k=3
"Bad yield"

Yield
Sales
Purchase

340 T
140 T
--

192 T
--
48 T

4000 T
4000 T
--

♦ Using the original solution (where expected values of yields were assumed, i.e.,

planting 120 acres of wheat, 80 acres of corn, & 300 acres of beets) his expected profit

would be $107,240 (which is $1,150 less than the optimal expected value) .

♦ The Expected Value of Perfect Information is $115,406 - $108,390 = $7016
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LAGRANGIAN DECOMPOSITION:

"SPLITTING" FIRST-STAGE VARIABLES

For each scenario k, define a first-stage decision kx which must equal the original first-

stage decision (which we now denote by 0x ).  We can then write the equivalent LP:

0
1

min
K

k
k k

k

Z cx p q y
=

= +∑
subject to

0x X∈

In order to separate the LP by scenario, we need to "relax" the constraints
0 , 1, ;kx x k K= = …
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LAGRANGIAN RELAXATION

Given a family of Lagrangian multiplier vectors λk, k=1,…K, we define the relaxation:

( ) ( )0 0

1 1

min
K K

k k
k k k

k k

D cx p q y x xλ λ
= =

= + + −∑ ∑
subject to 0x X∈

, 1, ;k k
k kT x Wy h k K+ = = …

1, ;kx k K≥ 0, = … 0, k=1,2,...Kky ≥

That is,

( ) 0

1 1

min
K K

k k
k k k k

k k

D c x x p q yλ λ λ
= =

   = − + +    
∑ ∑

subject to the above constraints.
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This is motivated by the fact that the problem then separates into K+1 subproblems:

( ) ( ) ( )0 1
1

,
K

K k k
k

D D Dλ λ λ λ
=

= +∑…

where

( ) 0
0

1

min
K

k
k

D c xλ λ
=

 = −
 

∑
subject to 0x X∈

and, for each k=1, …K:

( ) min k k
k k k kD x p q yλ λ= +

subject to k k
k kT x Wy h+ =
kx ≥ 0; 0ky ≥
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Dual Subproblem 0

for 1st Stage

Dual Subproblem for

Scenario k, k=1, …K

0

1
min

K

k
k

c xλ
=

 −
 

∑

subject to 0x X∈

Min k k
k k kx p q yλ +

subject to
k k

k kT x Wy h+ =
k kx y≥ 0, ≥ 0

The value ( ) ( ) ( )0 1
1

,
K

K k k
k

D D Dλ λ λ λ
=

= +∑… provides a lower bound on the optimal

cost Z.

The Lagrangian dual problem is to select the multipliers which will produce the tightest

such lower bound:

l ( )maxD D
λ

λ=

Note: In the linear case, D̂ Z= and there is no "duality gap".
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Master Problem:
Adjust multipliers λ

Lagrangian Subproblems:
Dk(λ), k=0,1,...K

Converged?

λ

STOP
Yes

No
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BENDERS' DECOMPOSITION

Benders' partitioning  (commonly known in stochastic programming as the "L-Shaped

Method") achieves separability of the second stage decisions, but in a different manner. 

Given a first-stage decision 0x , solve for each scenario k=1, …K the second-stage LP:

( )0 min k
k kP x q y=

subject to 0k
k kWy h T x= − ,

ky ≥ 0

Then ( ) ( )0 0 0

1

k

k k
k

P x cx p P x
=

= +∑ provides us with an upper bound on the optimal cost

Z, i.e.,

( ) ( )0D Z P xλ ≤ ≤
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Furthermore, solving each LP provides us with a vector kλ  of dual variables

corresponding to the constraints 0 kx x= .

If πk is the dual solution of the LP

( )0 min k
k kP x q y=

subject to 0k
k kWy h T x= − ,

ky ≥ 0

then T
k k kTλ π= −
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An aside: Computing kλ : 
The dual of

Min k
kq y

subject to
k k

k kT x Wy h+ = ,
0kx x= ,

0kx ≥
is the LP

0Max k k kh xπ λ+
subject to:

0T
k k kT Iπ λ+ =

T
k kW qπ ≤

If we eliminate kλ using the equality constraint, we obtain T
k k kTλ π= − and the dual LP

( )0Max k k kh T x π−
subject to

T
k kW qπ ≤
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The original problem now is seen to be equivalent to

( )0 0

1

Min
K

k k
k

cx p P x
=

+∑
subject to  0x X∈

By making use of dual information obtained after M evaluations of ( )0
kP x , Benders'

procedure forms an approximation (a convex piecewise-linear function) of ( )0
kP x :

( ) { }0 0

i=1, ...M
max i i

k k kP x xα β≥ +

so that the original problem reduces (with introduction of new variables kθ )to

0

1

Min
K

k k
k

cx p θ
=

+∑
subject to 0x X∈
and

0 ,  i=1, ...M;  k=1, ...Ki i
k k kxθ α β≥ +
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That is, we have approximated ( )0
kP x by the maximum of a finite number of linear

functions, i.e., by a piecewise-linear convex function:
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Benders’ Master Problem:
Select first-stage decisions x0

Benders’ Subproblems:
Solve Pk(x0), k=1,2,...K

Converged?
Yes

No

STOP

x0
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In either the Lagrangian relaxation approach or Benders' decomposition, the burden of

the computation lies in the respective master problems:  searching for the optimal λ in the

case of Lagrangian relaxation, & searching for the optimal x0 in the case of Benders'

decomposition.

The subproblems, being LPs separable by scenario, are easily solved in comparison.
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Benders’ Master Problem:
Select first-stage decisions x0

Benders’ Subproblems:
Solve Pk(x0), k=1,2,...K

Converged?
Yes

No

STOP

x0

Master Problem:
Adjust multipliers λ

Lagrangian Subproblems:
Dk(λ), k=0,1,...K

Converged?

λ

STOP

Yes

No

STOP
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CROSS-DECOMPOSITION

Cross-decomposition is a hybrid of Benders' decomposition and Lagrangian relaxation, in

which the subproblem of each algorithm serves the purpose of the master problem of the

other.

That is, Benders' subproblem receives the first-stage decisions x0 from the Dual

subproblem D0 rather than from the Benders' master problem.

Primal Subproblem for
Scenario k

Information
exchange

Dual Subproblem 0 for

1st Stage

Min k
k kp q y

subject to
( )0k

k kWy h T x= −
ky ≥ 0 (x0 fixed)

1

0

,... L

x

λ λ λ  =  →
←

0

1

Min
K

k
k

c xλ
=

 −
 

∑
subject to  

0x X∈
Likewise,  the Dual subproblem D0 receives the necessary multipliers λ from the

Benders' subproblem, rather than from the Dual master problem.
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CROSS-DECOMPOSITION

Note that the algorithm can be "streamlined"-- only one of the dual subproblems D0(λ)

needs to be solved at each iteration, except when the termination criterion 

( ) ( )0P x D λ ε− ≤

is to be tested.

Benders’
Subproblems:
Solve Pk(x0), k=1,2,...K

Lagrangian
Subproblems:
Dk(λ), k=0,1,...K

λ

x0
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MEAN VALUE CROSS DECOMPOSITION

Convergence is improved if  the mean of all previously generated Lagrangian multipliers

and first-stage decisions are sent to the Lagrangian and Benders' subproblems,

respectively.

Benders’
Subproblems:
Solve Pk(x0),
k=1,2,...K

Lagrangian
Subproblems:
Solve Dk(λ),
k=0,1,...K

AverageAverage

Average

λ λ

x0x0
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EXAMPLE

The cross-decomposition algorithm described above was implemented in the APL

language (APL+WIN 3.0).  First, the mean of all prior primal & dual solutions was used

at each iteration.  The result after 100 iterations was as follows:

Total cost: ¯106456.94, found at iteration #72

Best lower bound: ¯110752.17
Gap= 4295.23, or 4.03%

Stage One Variables:
i       X[i]
¯      ¯¯¯¯¯¯
1      159.72
2       83.33
3      250.00
4        6.94
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The plot of upper & lower bounds at each iteration : 
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The mean values of first-stage variables used in the primal subproblems at each iteration.
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As an alternative, exponential smoothing (with smoothing factor 10%) was used for both

primal and dual solutions.  After 100 iterations, the following was the best solution

found:

Total cost: ¯108210.7881, found at iteration #68

Best lower bound: ¯111187.0364
Gap= 2976.24833, or 2.750417387%

Stage One Variables:
i       X[i]
¯      ¯¯¯¯¯¯
1      166.70
2       81.90
3      250.87
4        0.14

This solution is very nearly optimal.  (Optimal solution is −$108390.) 
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Benders’ & Lagrangian
subproblems
at each iteration

Best upper & lower
bounds
at each iteration
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RESEARCH ISSUES

1. Given that the number of scenarios is extremely large (or probability distributions are continuous
and not discrete), how does one do "sampling" of scenarios in the cross-decomposition algorithm?

2. How can the cross-decomposition algorithm be extended to multi-(i.e., greater than 2) stages?

3. Given uncertainty in the parameters of the probability distributions describing future scenarios,
perhaps it is not appropriate to continue iterations until the duality gap between upper & lower
bounds is nearly zero-- can we determine an appropriate gap between upper & lower bound for a
termination criterion for the cross-decomposition algorithm? 

4. Case of integer first-stage decisions. 
♦ The Lagrangian subproblems Dk(λ) for scenarios k=1,…K  are now mixed-integer LP

problems, which are substantially more difficult to solve.
♦ The computational savings obtained by solving only the Lagrangian subproblem D0(λ) and not

the Lagrangian subproblems Dk(λ) for scenarios k=1,…K at every iteration become more
significant! 

♦ The Lagrangian subproblems Dk(λ) for scenarios k=1,…K may occasionally be solved, in
order to test the duality gap as a termination criterion.  How can information about the dual
variables gathered from Benders' subproblems be accumulated in order to construct a Benders'
master problem for each individual Dk(λ)?
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