

Giapetto Toys

© D. L. Bricker, 2002
Dept of Mechanical & Industrial Engineering
The University of Iowa

Giapetto, Inc. manufactures and sells two wooden products:

- sets of toy soldiers
- toy trains,

using only two resources:

- lumber
- labor.

The toys can be made from either

- Grade **A** lumber, or (allowing for scrap)
- Grade **B** lumber:

Resource \ product	Soldier Set	Train
Grade A Lumber	3 board feet	5 board feet
Grade B Lumber	4 board feet	8 board feet
Labor	2 hours	4 hours

90,000 hours of labor will be available for production.

A shipment of 150,000 board feet of lumber will be received before production begins.

The quality of the lumber is uncertain, however, and will not be determined until *after* the production is scheduled.

Based upon past experience with the supplier, the following cases with their probabilities have been identified:

Case:	1	2	3
Probability	25%	50%	25%
Grade A	125,000 bd ft	100,000 bd ft	75,000 bd ft
Grade B	25,000 bd ft	50,000 bd ft	75,000 bd ft

Demand for the products is also uncertain, with two cases having been identified:

Case:	1	2
Probability	40%	60%
Sets of soldiers	40,000	50,000
Toy trains	60,000	80,000

The revenue from sale of toy trains is \$50 and that from a set of toy soldiers is \$40.

Production quantities of the two products must be fixed *before* the lumber arrives and *before* the levels of demand are known.

After the lumber quality has been determined and the demand experienced, the company has the following *recourses* available:

- Buy sets of toy soldiers from another supplier at \$35 each
- Buy trains at \$45 each from another supplier
- Schedule overtime at an additional cost of \$10/hour

The six scenarios which can occur, with their probabilities.

Scenario #	Probability	Lumber quality	Demand
1			
2			
3			
4			
5			
6			

b. Compute the expected value of the random elements of the problem, and solve the LP to determine the optimal production quantities if the expected values were to occur:

# sets of toy soldiers	# wooden trains
_____	_____

What is the optimal value of the LP? \$ _____

c. Using the production quantities found in (b), compute the optimal *recourses* for each scenario, the profit for each scenario.

Scenario	# soldier sets purchased	# trains purchased	overtime labor	profit
1	_____	_____	_____	_____
2	_____	_____	_____	_____
3	_____	_____	_____	_____
4	_____	_____	_____	_____
5	_____	_____	_____	_____
6	_____	_____	_____	_____

Expected profit: \$ _____

d. Find the production quantities which maximize the expected profits by solving the “deterministic equivalent” LP.

- What are the production quantities?

# sets of toy soldiers	# wooden trains
_____	_____

- What are the dimensions of the LP tableau? _____ \times _____

- What is the maximum expected profit? \$ _____

- What is the recourse if the lumber is of the lowest quality (case #1) and the demand is the higher estimate (case #2)?

Scenario	# soldier sets purchased	# trains purchased
_____	_____	_____

--	--

- What is the *value of the stochastic solution (VSS)*, i.e., the difference in expected profit when using the stochastic LP solution compared to the LP using the expected values? \$ _____

Model definition:

Decision variables

- **First Stage:**

X_1 = # of sets of soldiers to be produced

X_2 = # toy trains to be produced

- **Second Stage (Recourse):**

Y_{1A} & Y_{1B} = # of sets of soldiers to be produced from Grade A and Grade B lumber, respectively

Y_{2A} & Y_{2B} = # of toy trains to be produced from Grade A and Grade B lumber, respectively

Z_1 & Z_2 = # of sets of soldiers and trains, respectively, to be purchased from outside source

S_1 & S_2 = # of sets of soldiers and trains, respectively, sold

T = # hours of overtime used

Second Stage Optimization Problem:

After X has selected in the first stage, and we have observed the random values of

A & B (the quantities of Grades A & B lumber, respectively), and

D_1 and D_2 (the demands for toy soldiers and trains, respectively).

Find the maximum revenue minus costs:

$$Q(X) = \text{Maximum } 40S_1 + 50S_2 - 35Z_1 - 45Z_2 - 10T$$

subject to

Production schedule is fulfilled:
$$\begin{cases} Y_{1A} + Y_{1B} = X_1 \\ Y_{2A} + Y_{2B} = X_2 \end{cases}$$

Lumber resource constraints:

where A & B are the random available quantities of Grades A & B lumber, in board feet.

Labor resource constraint:

$$2X_1 + 4X_2 - T = 90000$$

Sales consist of produced & purchased products:
$$\begin{cases} S_1 = Y_{1A} + Y_{1B} + Z_1 \\ S_2 = Y_{2A} + Y_{2B} + Z_2 \end{cases}$$

Sales limited by demand:
$$\begin{cases} S_1 \leq D_1 \\ S_2 \leq D_2 \end{cases}$$

where D_1 & D_2 are the random demands for the two products.

nonnegativity: $Y_{1A}, Y_{1B}, Y_{2A}, Y_{2B}, S_1, S_2, Z_1, Z_2, \& T \geq 0$

First-stage Optimization Problem:

$$\underset{X \geq 0}{\text{Maximize}} \quad \sum_{k \in K} p_k Q_k(X)$$

where K is the set of scenarios, and

p_k the probability of scenario # k .

**G
I
A
P
E
T
T
O**

Giapetto Toys

First-stage data:

A, B =

1 1 > 0

i	variable	cost
1	X[1]	0
2	X[2]	0

Objective: Minimize

Second-stage data

K = # scenarios = 6

The following data vary
by scenario: h

Costs:

i	var.	q
1	Y1A	0
2	Y1B	0
3	Y2A	0
4	Y2B	0
5	Z1	35
6	Z2	45
7	S1	-40
8	S2	-50
9	T	10

Technology matrix T
(coefficients of
x in 2nd stage) =

-1	0
0	-1
0	0
0	0
2	4
0	0
0	0
0	0
0	0

Technology matrix W (coefficients of
Y in 2nd stage) =

1	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
3	0	5	0	0	0	0	0	0
0	4	0	8	0	0	0	0	0
0	0	0	0	0	0	0	0	-1
1	1	0	0	1	0	-1	0	0
0	0	1	1	0	1	0	-1	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0

Right-hand-sides in second stage =

k	p[k]	1	2	3	4	5	6	7	8	9
---	------	---	---	---	---	---	---	---	---	---

```

1 0.1 0 0 125000 25000 90000 0 0 40000 60000
2 0.2 0 0 100000 50000 90000 0 0 40000 60000
3 0.1 0 0 75000 75000 90000 0 0 40000 60000
4 0.15 0 0 125000 25000 90000 0 0 50000 80000
5 0.3 0 0 100000 50000 90000 0 0 50000 80000
6 0.15 0 0 75000 75000 90000 0 0 50000 80000

```

Note: h varies by scenario

Optimal Solution

(Found by solving deterministic equivalent problem directly, without decomposition)

Total objective function: -2091250

Stage One: nonzero variables:

i	variable	value
1	X[1]	40000
2	X[2]	2250
3	surplus_1	42250

1	Y1A	38250
2	Y1B	1750
4	Y2B	2250
6	Z2	57750
7	S1	40000
8	S2	60000
10	slack_3	10250
12	slack_5	1000

Scenario #2

i	variable	value
1	Y1A	32000
2	Y1B	8000
4	Y2B	2250
6	Z2	57750
7	S1	40000

Scenario #1

i variable value

8	S2	60000
10	slack_3	4000
12	slack_5	1000

Scenario #3

i	variable	value
1	Y1A	21250
2	Y1B	18750
3	Y2A	2250
6	Z2	57750
7	S1	40000
8	S2	60000
12	slack_5	1000

Scenario #4

i	variable	value
1	Y1A	38250
2	Y1B	1750
4	Y2B	2250
5	Z1	10000
6	Z2	77750
7	S1	50000
8	S2	80000
10	slack_3	10250
12	slack_5	1000

Scenario #5

i	variable	value
1	Y1A	32000

2	Y1B	8000
4	Y2B	2250
5	Z1	10000
6	Z2	77750
7	S1	50000
8	S2	80000
10	slack_3	4000
12	slack_5	1000

Scenario #6

i	variable	value
1	Y1A	21250
2	Y1B	18750
3	Y2A	2250
5	Z1	10000
6	Z2	77750
7	S1	50000
8	S2	80000
12	slack_5	1000

Solution with Perfect Information

Solution for scenario #1

Optimal cost: -2023750

Stage One: nonzero variables:

i	value	name
---	-------	------

```
1 40000.00 X[1]
2 4750.00 X[2]
3 44750.00 surplus_1
```

Second-stage: nonzero variables

i	value	name
1	33750.00	Y1A
2	6250.00	Y1B
3	4750.00	Y2A
6	55250.00	Z2
7	40000.00	S1
8	60000.00	S2
9	9000.00	T

```
6 56500.00 Z2
7 40000.00 S1
8 60000.00 S2
9 4000.00 T
```

Solution for scenario #3

Optimal cost: -2001250

Stage One: nonzero variables:

i	value	name
1	40000.00	X[1]
2	2250.00	X[2]
3	42250.00	surplus_1

Solution for scenario #2

Optimal cost: -2017500

Stage One: nonzero variables:

i	value	name
1	40000.00	X[1]
2	3500.00	X[2]
3	43500.00	surplus_1

Second-stage: nonzero variables

i	value	name
1	27500.00	Y1A
2	12500.00	Y1B
3	3500.00	Y2A

Second-stage: nonzero variables

i	value	name
1	21250.00	Y1A
2	18750.00	Y1B
3	2250.00	Y2A
6	57750.00	Z2
7	40000.00	S1
8	60000.00	S2
12	1000.00	slack_5

Solution for scenario #4

Optimal cost: -2268750

Stage One: nonzero variables:

i	value	name
---	-------	------

```

1 47916.67 X[1]
3 47916.67 surplus_1
Second-stage: nonzero variables
i      value      name
1 41666.67 Y1A
2 6250.00 Y1B
5 2083.33 Z1
6 80000.00 Z2
7 50000.00 S1
8 80000.00 S2
9 5833.33 T

```

Solution for scenario #5

```

Optimal cost: -2237500
Stage One: nonzero variables:
i      value      name
1 45833.33 X[1]
3 45833.33 surplus_1

```

Second-stage: nonzero variables

i	value	name
1	33333.33	Y1A
2	12500.00	Y1B
5	4166.67	Z1

i	value	name
6	80000.00	Z2
7	50000.00	S1
8	80000.00	S2
9	1666.67	T

Solution for scenario #6

```

Optimal cost: -2181250
Stage One: nonzero variables:
i      value      name
1 43750.00 X[1]
3 43750.00 surplus_1

```

Second-stage: nonzero variables

i	value	name
1	25000.00	Y1A
2	18750.00	Y1B
5	6250.00	Z1
6	80000.00	Z2
7	50000.00	S1
8	80000.00	S2
12	2500.00	slack_5

Expected cost with perfect information: -2144750

Certainty-Equivalent Tableau

Giapetto Toys

b	z	1	2	3	1	2	3	4	5	6	7	8	9	0	1	2	3	4
0	1	0	0	0	0	0	0	0	35	45	-40	-50	10	0	0	0	0	0
0	0	1	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	-1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
100000	0	0	0	0	3	0	5	0	0	0	0	0	0	1	0	0	0	0
50000	0	0	0	0	0	4	0	8	0	0	0	0	0	0	1	0	0	0
90000	0	2	4	0	0	0	0	0	0	0	0	0	-1	0	0	1	0	0
0	0	0	0	0	1	1	0	0	1	0	-1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	1	0	-1	0	0	0	0	0	0
46000	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
72000	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Optimal Solution

Found by solving certainty equivalent problem,
i.e., replacing all random parameters by their expected values.

Total objective function: -2177500

Stage One: nonzero variables:

i	variable	value
1	X[1]	45833.33333
3	surplus_1	45833.33333

Second Stage: nonzero variables

i	variable	value
---	----------	-------

1	Y1A	33333.333333
2	Y1B	12500.000000
5	Z1	166.666667
6	Z2	72000.000000
7	S1	46000.000000
8	S2	72000.000000
9	T	1666.666667