

© D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa Giapetto, Inc. manufactures and sells two wooden products:

- sets of toy soldiers
- toy trains,

using only two resources:

- lumber
- labor.

The toys can be made from either

- Grade **A** lumber, *or* (allowing for scrap)
- Grade **B** lumber:

Resource \ product	Soldier Set	Train
Grade A Lumber	3 board feet	5 board feet
Grade B Lumber	4 board feet	8 board feet
Labor	2 hours	4 hours

90,000 hours of labor will be available for production.

A shipment of 150,000 board feet of lumber will be received before production begins.

The quality of the lumber is uncertain, however, and will not be determined until *after* the production is scheduled. Based upon past experience with the supplier, the following cases with their probabilities have been identified:

Case:	1	2	3
Probability	25%	50%	25%
Grade A	125,000 bd ft	100,000 bd ft	75,000 bd ft
Grade B	25,000 bd ft	50,000 bd ft	75,000 bd ft

Giapetto, Inc. 05/06/02 page 3 of 18

Demand for the products is also uncertain, with two cases having been identified:

Case:	1	2
Probability	40%	60%
Sets of soldiers	40,000	50,000
Toy trains	60,000	80,000

The revenue from sale of toy trains is \$50 and that from a set of toy soldiers is \$40.

Giapetto, Inc. 05/06/02 page 4 of 18

Production quantities of the two products must be fixed *before* the lumber arrives and *before* the levels of demand are known.

After the lumber quality has been determined and the demand experienced, the company has the following *recourses* available:

- Buy sets of toy soldiers from another supplier at \$35
 each
- o Buy trains at \$45 each from another supplier
- o Schedule overtime at an additional cost of \$10/hour

Lumber quality Demand Scenario # Probability 2 4 b. Compute the expected value of the random elements of the problem, and solve the LP to determine the optimal production quantities if the expected values were to occur: # sets of toy soldiers # wooden trains What is the optimal value of the LP? \$ c. Using the production quantities found in (b), compute the optimal recourses for each scenario, the profit for each scenario. # soldier sets # trains overtime purchased Scenario purchased labor profit 2 3 4 5 6 Expected profit: \$ d. Find the production quantities which maximize the expected profits by solving the "deterministic equivalent" LP. • What are the production quantities? # sets of toy soldiers # wooden trains What are the dimensions of the LP tableau? What is the maximum expected profit? \$ What is the recourse if the lumber is of the lowest quality (case #1) and the demand is the higher estimate (case #2)?

The six scenarios which can occur, with their probabilities.

soldier sets

purchased

Scenario

trains

purchased

•	What is the <i>value of the stochastic solution (VSS)</i> , i.e., the difference in expected profit when using the stochastic LP solution compared to the LP using the expected values? \$

Giapetto, Inc. 05/06/02 page 7 of 18

Model definition:

Decision variables

First Stage:

 X_1 = # of sets of soldiers to be produced

 X_2 = # toy trains to be produced

Second Stage (Recourse):

 $Y_{1A} & Y_{1B} = \#$ of sets of soldiers to be produced from Grade A and Grade B lumber, respectively

 $Y_{2A} & Y_{2B} = #$ of toy trains to be produced from Grade A and Grade B lumber, respectively

 $Z_1 \& Z_2 = \#$ of sets of soldiers and trains, respectively, to be purchased from outside source

 $S_1 \& S_2 = \#$ of sets of soldiers and trains, respectively, sold

T = # hours of overtime used

Second Stage Optimization Problem:

After X has selected in the first stage, and we have observed the random values of

A & B (the quantities of Grades A & B lumber, respectively), and

 D_1 and D_2 (the demands for toy soldiers and trains, respectively).

Find the maximum revenue minus costs:

$$Q(X) = Maximum \quad 40S_1 + 50S_2 - 35Z_1 - 45Z_2 - 10T$$
 subject to

Production schedule is fulfilled:
$$\begin{cases} Y_{1A} + Y_{1B} = X_1 \\ Y_{2A} + Y_{2B} = X_2 \end{cases}$$

Lumber resource constraints:

where A & B are the random available quantities of Grades A & B lumber, in board feet.

Labor resource constraint:
$$2X_1 + 4X_2 - T = 90000$$

Sales consist of produced & purchased products: $\begin{cases} S_1 = Y_{1A} + Y_{1B} + Z_1 \\ S_2 = Y_{2A} + Y_{2B} + Z_2 \end{cases}$

Sales limited by demand: $\begin{cases} S_1 \leq D_1 \\ S_2 \leq D_2 \end{cases}$

where $D_1 \& D_2$ are the random demands for the two products.

nonnegativity: $Y_{1A}, Y_{1B}, Y_{2A}, Y_{2B}, S_1, S_2, Z_1, Z_2, \& T \ge 0$

First-stage Optimization Problem:

$$Maximize \sum_{k \in K} p_k Q_k(X)$$

where K is the set of scenarios, and p_k the probability of scenario #k.

```
Giapetto Toys
                                        Technology matrix T
                                        (coefficients of
First-stage data:
                                        X in 2nd stage) =
A,B=
1 1 > 0
                                         ^{-}1
                                             0
                                          0 -1
    variable
               cost
                                             0
    x[1]
                                          0
                                             0
  2 X[2]
  Objective:
              Minimize
                                          0
                                             0
                                             0
                                          0
Second-stage data
                                          0
                                             0
K= # scenarios = 6
                                          0
The following data vary
by scenario:
               h
Costs:
                                        Technology matrix W (coefficients of
                                        Y in 2nd stage) =
i var.
1 Y1A
                                         1 1 0 0 0 0
                                                             0
2 Y1B
                                         0 0 1 1 0 0
                                                             0
                                         3 0 5 0 0 0 0 0
3 Y2A
                                                             0
4 Y2B
                                         0 4 0 8 0 0 0 0
                                                             0
        0
5 71
       35
                                         0 0 0 0 0 0 0 0 -1
6 72
       45
                                         1 1 0 0 1 0 -1 0
    -40
7 S1
                                         0 0 1 1 0 1
8 S2
      ^{-}50
                                         0 0 0 0 0
9 T
                                         0 0 0 0 0
                                                         1
       10
                                                             0
```

Right-hand-sides in second stage = k p[k] 1 2 3 4 5 6 7 8 9

Giapetto 5/6/2002 page 12 of 18

```
1 0.1 0 0 125000 25000 90000 0 0 40000 60000
2 0.2 0 0 100000 50000 90000 0 0 40000 60000
3 0.1 0 0 75000 75000 90000 0 0 40000 60000
4 0.15 0 0 125000 25000 90000 0 0 50000 80000
5 0.3 0 0 100000 50000 90000 0 0 50000 80000
6 0.15 0 0 75000 75000 90000 0 0 50000 80000
Note: h varies by scenario
______
Optimal Solution
(Found by solving deterministic 1 Y1A 38250
equivalent
                                  2 Y1B
                                             1750
                                 4 Y2B
problem directly, without
                                             2250
decomposition)
                                  6 Z2
                                             57750
Total objective function: -2091250
                                 7 S1
                                            40000
                                  8 S2
                                            60000
                              10 slack 3 10250
Stage One: nonzero variables:
                                 12 slack_5 1000
i variable value
 1 X[1] 40000
                                 Scenario #2
 2 X[2] 2250
                                 i variable value
 3 surplus_1 42250
                                             32000
                                  1 Y1A
                                    Y1B
Second Stage: nonzero variables
                                         8000
                                  4 Y2B
                                         2250
                                     7.2
Scenario #1
                                           57750
                                     S1
   variable value
                                             40000
```

Giapetto 5/6/2002 page 13 of 18

8	S2	60000	2	Y1B	8000	
10	slack_3	4000	4	Y2B	2250	
12	slack_5	1000	5	Z1	10000	
			 6	Z2	77750	
Scen	ario #3		7	S1	50000	
i	variable	value	8	S2	80000	
1	Y1A	21250	10	slack_3	4000	
2	Y1B	18750	12	slack_5	1000	
3	Y2A	2250			. – – – – – -	
6	Z2	57750	Scen	ario #6		
7	S1	40000	i	variable	value	
8	S2	60000	1	Y1A	21250	
12	slack_5	1000	2	Y1B	18750	
			 3	Y2A	2250	
Scen	ario #4		5	Z1	10000	
i	variable	value	6	Z2	77750	
1	Y1A	38250	7	S1	50000	
2	Y1B	1750	8	S2	80000	
4	Y2B	2250	12	slack_5	1000	
5	Z1	10000				
6	Z2	77750				
7	S1	50000				
8	S2	80000	Solu	tion with	Perfect	Information
10	slack_3	10250				
12	slack_5	1000	Solu	tion for s	cenario	#1
Scen	ario #5		Opti	mal cost:	-2023750)
<u>i</u>	variable	value	Stag	e One: non	zero vai	riables:
1	Y1A	32000	<u>i</u>	value	name	2

Giapetto 5/6/2002 page 14 of 18

```
40000.00 X[1]
                                        56500.00 Z2
                                    7 40000.00 S1
    4750.00 \times [2]
                                    8 60000.00 S2
     44750.00 surplus_1
                                    9 4000.00 T
Second-stage: nonzero variables
   value name
                                    Solution for scenario #3
   33750.00 Y1A
2 6250.00 Y1B
                                   Optimal cost: -2001250
3 4750.00 Y2A
                                   Stage One: nonzero variables:
6 55250.00 Z2
                                         value
                                                   name
                                       40000.00 X[1]
   40000.00 S1
                                       2250.00 X[2]
8 60000.00 S2
     9000.00 T
                                    3 42250.00 surplus_1
                                   Second-stage: nonzero variables
Solution for scenario #2
                                    i value
                                                   name
                                       21250.00 Y1A
Optimal cost: -2017500
                                      18750.00 Y1B
Stage One: nonzero variables:
                                    3 2250.00 Y2A
i
       value name
                                    6 57750.00 Z2
                                    7 40000.00 S1
1 40000.00 X[1]
2 	 3500.00 	 X[2]
                                    8 60000.00 S2
3 43500.00 surplus_1
                                   12 1000.00 slack 5
Second-stage: nonzero variables
                                   Solution for scenario #4
   value name
   27500.00 Y1A
                                   Optimal cost: -2268750
2 12500.00 Y1B
                                   Stage One: nonzero variables:
   3500.00 Y2A
                                           value
                                                    name
```

Giapetto 5/6/2002 page 15 of 18

```
1  47916.67 X[1]
3  47916.67 surplus_1
Second-stage: nonzero variables
i  value name
1  41666.67 Y1A
2  6250.00 Y1B
5  2083.33 Z1
6  80000.00 Z2
7  50000.00 S1
8  80000.00 S2
9  5833.33 T
```

Solution for scenario #5

Optimal cost: -2237500

Stage One: nonzero variables:

Ī	Ĺ	va⊥ue	name
1	L	45833.33	X[1]
3	3	45833.33	surplus_1

Second-stage: nonzero variables

i	value	name	
1	33333.33	Y1A	
2	12500.00	Y1B	
5	4166.67	Z1	

6	80000.00	Z2
7	50000.00	S1
8	80000.00	S2
9	1666.67	Т

Solution for scenario #6

Optimal cost: -2181250

Stage One: nonzero variables:

i	value	name
1	43750.00	X[1]
3	43750.00	surplus

Second-stage: nonzero variables

i	value	name
1	25000.00	Y1A
2	18750.00	Y1B
5	6250.00	Z1
6	80000.00	Z2
7	50000.00	S1
8	80000.00	S2
12	2500.00	slack_5

Expected cost with perfect information: -2144750

Giapetto 5/6/2002 page 16 of 18

Certainty-Equivalent Tableau

Giapetto Toys

b	Z	1	2	3	1	2	3	4	5	6	7	8	9	0	1	2	3	4
0	1	0	0	0	0	0	0	0	35	45	$^{-}40$	⁻ 50	10	0	0	0	0	0
0	0	1	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	-1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
100000	0	0	0	0	3	0	5	0	0	0	0	0	0	1	0	0	0	0
50000	0	0	0	0	0	4	0	8	0	0	0	0	0	0	1	0	0	0
90000	0	2	4	0	0	0	0	0	0	0	0	0	-1	0	0	1	0	0
0	0	0	0	0	1	1	0	0	1	0	-1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	1	0	-1	0	0	0	0	0	0
46000	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
72000	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Optimal Solution

Found by solving certainty equivalent problem,

i.e., replacing all random parameters by their expected values.

Total objective function: -2177500

Stage One: nonzero variables:

i	variable	value
1	X[1]	45833.33333
3	surplus_1	45833.33333

Second Stage: nonzero variables

<u>i</u> variable value

Giapetto 5/6/2002 page 17 of 18

1	Y1A	33333.3333333
2	Y1B	12500.0000000
5	Z1	166.666667
6	Z2	72000.0000000
7	S1	46000.0000000
8	S2	72000.0000000
9	Т	1666.666667

Giapetto 5/6/2002 page 18 of 18