

Stochastic LP with Recourse

Example problem in Birge & Louveaux, Introduction to Stochastic Programming

SLPwR: Farmer Problem

page 1

- A farmer raises **wheat**, **corn**, and **sugar beets** on 500 acres of land. Before the planting season he wants to decide how much land to devote to each crop.
- At least 200 tons of wheat and 240 tons of corn are needed for **cattle feed**, which can be purchased from a wholesaler if not raised on the farm.
- Any grain in excess of the cattle feed requirement can be sold at \$170 and \$150 per ton of wheat and corn, respectively.
- The wholesaler sells the grain for 40% more (namely \$238 and \$210 per ton, respectively.)
- Up to 6000 tons of sugar beets can be sold for \$36 per ton; any additional amounts can be sold for \$10/ton.

Crop yields are uncertain, depending upon weather conditions during the growing season.

Three **scenarios** have been identified ("good", "fair", and "bad"), each equally likely.

(In this data, only the yields are scenario-dependent, while in reality the purchase prices and sales revenues from grain would be higher in year with poor yield, etc.)

Scenario	Wheat yield (tons/acre)	Corn yield (tons/acre)	Beet yield (tons/acre)
1. Good	3	3.6	24
2. Fair	2.5	3	20
3. Bad	2	2.4	16

General Stochastic LP model:

$$Z = \min cx + \sum_{k=1}^{K} p_k q_k y_k$$
(0.1)
subject to
$$T_k x + W y_k = h_k, k = 1, \dots K;$$
(0.2)
$$x \in X$$
(0.3)

In this example, only T_k varies by scenario, while the cost vector q_k and the right-hand-side h_k are fixed.

Decision variables are

First stage:	x_1 = acres of land planted in wheat
	\mathbf{x}_2 = acres of land planted in corn
	x_3 = acres of land planted in beets
Second stage:	w_1 = tons of wheat sold
	w_2 = tons of corn sold
	w_3 = tons of beets sold at \$36/T
	w_4 = tons of beets sold at \$10/T
	y_1 = tons of wheat purchased
	y_2 = tons of corn purchased

The stochastic decision problem is

Minimize
$$150x_1 + 230x_2 + 260x_3 + \frac{1}{3}\sum_{k=1}^{3}Q_k(x)$$

subject to $x_1 + x_2 + x_3 \le 500$
 $x_j \ge 0, j=1,2,3$

where $Q_i(x)$ is the optimal solution of the second stage (recourse) problem after the scenario has been determined, given that the first stage variables x have been selected.

SLPwR: Farmer Problem

Solving Certainty Equivalent

All random parameters (in this case, T) are replaced by their expected values.

Tableau

b	Z	X[1]	[2]	[3]]	1	2	3	4	5	6	7	8	9	0
0	1	150	230	260	0	238	210	-170	-150	-36	-10	0	0	0	0
500	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
200	0	2.5	0	0	0	1	0	-1	0	0	0	-1	0	0	0
240	0	0	3	0	0	0	1	0	-1	0	0	0	-1	0	0
0	0	0	0	-20	0	0	0	0	0	1	1	0	0	1	0
6000	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Solution

Optimal Solution

Found by solving certainty equivalent problem, i.e., replacing all random parameters by their expected values.

Second Stage												
Tota	l cost: ⁻ 1	18600										
				i	variable	value						
Stag	Stage One Variables:											
				1	Y[1]	0						
i	variable	value		2	Y[2]	0						
1	X[1]	120	Wheat acres	3	Wl	100	Wheat sold					
2	X[2]	80	Corn acres	4	W2	0						
3	X[3]	300	Beet acres	5	W3	6000	Beets sold					
4	slack 1	0		6	W4	0						
				7	surplus 1	0						
				8	surplus 2	0						
				9	slack 3	0						
				10	slack 4	0						

Does this mean that the farmer's expected revenues will actually be 118600?

SLPwR: Farmer Problem

page 9

Evaluating this Trial Solution for Expected Cost:

First stage:

	X[i]	i
Wheat acres	120	1
<i>Corn acres</i>	80	2
Beet acres	300	3
	0	4

Second stage costs:

scenario k	cost	p[k]
1	⁻ 29155.55556	0.33333333333
2	-25888.88889	0.33333333333
3	-18835.55556	0.33333333333
First stage cost Expected second Total:	stage cost:	114400.00 -221640.00 -107240.00

Using this planting plan, therefore, yields an expected **107240** revenue.

Tableau of Deterministic Equivalent LP

b	Z	X[1]	X[2]	[3]]	1	2	3	4	5	6	7	8	9	0	1	2
0	1	150	230	260	0	79.33	70	-56.67	-50	-12	-3.333	0	0	0	0	79.33	70
500	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
200	0	3	0	0	0	1	0	-1	0	0	0	-1	0	0	0	0	0
240	0	0	3.6	0	0	0	1	0	-1	0	0	0	-1	0	0	0	0
0	0	0	0	-24	0	0	0	0	0	1	1	0	0	1	0	0	0
6000	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
200	0	2.5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
240	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	-20	0	0	0	0	0	0	0	0	0	0	0	0	0
6000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	0	0	2.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	-16	0	0	0	0	0	0	0	0	0	0	0	0	0
6000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

continued....

(Tableau, continued)

	3	4	5	б	7	8	9	0	1	2	3	4	5	б	7	8	9	0
	-56.67	-50	-12	-3.333	0	0	0	0	79.33	70	-56.67	-50	-12	-3.333	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-1	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	-1	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
_	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	-1	0	0	0	-1	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	-1	0	0	0	-1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

"Picture" of LP Tableau

****	* * * * * *	* * * * * *	* * * * * *
* ****			
* *	* * *		
* *	* * *		İ
*	* * *	*	İ
*	*	*	İ
* *		* * *	
* *		* * *	İ
*		* *	*
*		*	*
* *			* * *
* *			* * *
*			** *
*			* *

Optimal Solution

(Found by solving deterministic equivalent problem directly, without decomposition)

Total cost: 108390

Stage One Variables:

i	variable	value	
1	X[1]	170	Wheat Acres
2	X[2]	80	Corn Acres
3	X[3]	250	Beets Acres
4	slack 1	0	

Second Stage

For each scenario, the optimal recourse variables are computed:

SLPwR: Farmer Problem

page 14

Scenario #1 "Good" yield

i	variable	value	
1	Y[1]	0	
2	Y[2]	0	
3	Wl	310	Sales of wheat
4	W2	48	Sales of corn
5	W3	6000	Sales of beets
6	W4	0	
7	surplus 1	0	
8	surplus 2	0	
9	slack 3	0	
10	slack 4	0	

Scenario #2 "Fair" yield

i	variable	value	
1	Y[1]	0	
2	Y[2]	0	
3	Wl	225	Sales of wheat
4	W2	0	
5	W3	5000	Sales of beets
6	W4	0	
7	surplus 1	0	
8	surplus 2	0	
9	slack 3	0	
10	slack 4	1000	

Scenario #3 "Bad" yield

i	variable	value	
1	Y[1]	0	
2	Y[2]	48	Purchase of corn
3	Wl	140	Sales of wheat
4	W2	0	
5	W3	4000	Sales of beets
6	W4	0	
7	surplus 1	0	
8	surplus 2	0	
9	slack 3	0	
10	slack 4	2000	

Assuming "Perfect Information", i.e., assuming that the farmer has advance knowledge of the quality of the yield and can base his decision upon that knowledge

Solution for scenario #1 "Good" yield

Optimal cost: 167666.6667

Stage One Variables:

i	X[i]	
1	183.33	Wheat Acres
2	66.67	Corn Acres
3	250.00	Beet Acres
4	0.00	

Second-stage: nonzero variables

	Y[i]	i
Sales of wheat	350.00	3
Sales of Beets	6000.00	5

Solution for scenario #2 "Fair" yield

Optimal cost: 118600

Stage One Variables:

	X[i]	i
Wheat Acres	120.00	1
Corn Acres	80.00	2
Beet Acres	300.00	3
	0.00	4

Second-stage: nonzero variables

	Y[i]	i
Sales of Wheat	100.00	3
Sales of Beets	6000.00	5

Solution for scenario #3 "Bad" yield

Optimal cost: 59950

Stage One Variables:

i	X[i]	
1	100.00	Wheat Acres
2	25.00	Corn Acres
3	375.00	Beet Acres
4	0.00	

Second-stage: nonzero variables

	Y[i]	i
Purchase of Corn	180.00	2
Sales of Beets	6000.00	5

Expected value with perfect information:

$$\frac{1}{3}(167666.6667) + \frac{1}{3}(118600) + \frac{1}{3}(59950) = 115405.56$$

What is the Value of Perfect Information (VPI)?

(Expected value with perfect information) – (Expected value without information)

= 115405 - 108390 = 7015