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Consider a constrained optimization problem 
 
 P:  ( ){ }min | nz c x x X R= ∈ ⊆  
and a problem 

PR:   ( ){ }min |R nz f x x T R= ∈ ⊆  
The problem  PR is a relaxation of problem P if: 

            •  X T⊆ ,   i.e., every x feasible in P is also feasible in PR, 
and 
            •  ( ) ( )      f x c x x X≤ ∀ ∈  
 
Proposition:  If PR is a relaxation of P, then its optimal value is a lower 

bound of the optimal value of P: 
Rz z≤ . 
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Notes:   
 
• The solution zR of relaxation  PR provides a guaranteed estimate on 

the quality of a proposed solution of P:  for any feasible x X∈ , the 
maximum relative error is 

 ( ) R

R

c x z
z

−
. 

 
• Relaxations are most frequently used in branch-&-bound algorithms 

for combinatorial problems (providing a bound used in “fathoming” 
nodes of the search tree.) 

 
• To be useful, PR must be more easily solved than P. 
 
• If P is a maximization problem, then the second condition in the 

definition of a relaxation is  ( ) ( )      f x c x x X≥ ∀ ∈   and as a result, the 
relaxation provides an upper bound on z. 
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Linear Programming Relaxation of Integer & Mixed-Integer LP 
 
The most common relaxation of IP problems is the LP relaxation, in 
which integer restrictions are removed: 

{ }:   min | , nP z cx Ax b x Z+= ≥ ∈  
where nZ+  is the set of n-dimensional vectors of non-negative integers. 

{ }:   min | ,LP LP nP z cx Ax b x R+= ≥ ∈  
 
Note:  in the definition of relaxation, let 

 ( ) ( )c x cx f x= =  and   

{ } { }| , & | ,n nX x Ax b x Z T x Ax b x R+ +≡ ≥ ∈ ≡ ≥ ∈   
so that  X T⊂  
 
I.e., while the objective functions of P & PLP are the same, relaxing the 
integer restrictions of an IP adds feasible solutions to the problem, so 
that a lower minimum might be found. 
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Lagrangian Relaxation of an Integer Programming Problem 
 
Consider the IP problem 
 { }:    min | , nP z cx Ax b x X Z+= ≥ ∈ ⊆  
 

Often, X is defined by additional linear constraints on the integer 

variables, i.e., { }| , nX x Dx e x Z+= ≥ ∈ . 

 
Dropping the constraints Ax b≥  obviously satisfies the definition of a 

relaxation, since  

• the first condition is satisfied  (the feasible region is expanded) 
• the second condition is trivially satisfied (the objective is unchanged). 
 
To obtain a more useful relaxation, we change the objective function as 

well, using a vector of Lagrangian multipliers. 
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Suppose that A is m×n, i.e., m constraints are being relaxed. 

Let mR+λ ∈  be a vector of nonnegative numbers (Lagrangian multipliers), 

one for each relaxed constraint. 

For example, iλ  is the multiplier for constraint i:  

 
1 1

,     i.e.,   0
n n

ij j i ij j i
j j

a x b a x b
= =

≥ − ≥∑ ∑ . 

In the feasible region, then, the product of iλ  and 
1

n

ij j i
j

a x b
=

−∑  is non-

negative, i.e., 
1

0
n

i ij j i
j

a x b
=

⎛ ⎞
λ − ≥⎜ ⎟

⎝ ⎠
∑ , so that  

 
1 1 1 1

n m n n

j j i ij j i j j
j i j j

c x a x b c x
= = = =

⎛ ⎞
− λ − ≤⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑  
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The Lagrangian relaxation of P is therefore defined to be 

 ( ) ( ) ( ){ }:     min |L LP z cx Ax b x Xλ λ = − λ − ∈  

since, as we have shown,  

 for any λ≥0 and x X∈ , ( ) ( )f x cx Ax b cx≡ − λ − ≤  

Note that outside the feasible region, 

  ( )0 0Ax b Ax b− ≤ ⇒ λ − ≤  

so that the objective ( ) ( )f x cx Ax b≡ − λ −  may be thought of as including 

a penalty for violating the constraints. 
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Lagrangian Duality 

Every choice of the Lagrangian multipliers λ≥0 yields a Lagrangian 

relaxation, i.e., a lower bound on the optimal value z. 

 

The Lagrangian dual problem is to choose multipliers to obtain the 

greatest lower bound, i.e., 

 ( ){ }ˆ:    max | 0L L LD z z= λ λ ≥  

This is, in effect, a maxi-min problem, since evaluating the dual 

objective function  ( )Lz λ  requires solving a minimization problem. 

 Note that ˆLz z≤  , i.e., ˆ 0Lz z− ≥ .  This nonnegative difference is called 

the duality gap. 
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Lagrangian Dual Problem:   

Find λ≥0 so that the Lagrangian relaxation yields the greatest lower 

bound of z: 

 ( ){ }ˆ ˆ:     max | 0L L LP z z= λ λ ≥  
 
Obviously,   
 ( )ˆ     0L Lz z z≥ ≥ λ ∀λ ≥  

and the difference   ˆ 0Lz z− ≥   is called the Lagrangian duality gap. 
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If *λ  is the optimal dual solution, then the solution ( )*x λ  of the 

Lagrangian relaxation ( )*LP λ  is generally infeasible in the primal 

problem, i.e., ( )*Ax bλ ≥  is violated. 

 

If ( )*x λ  is feasible in the primal, is it optimal??? 

 

Sometimes ( )*x λ  can be easily adjusted so as to satisfy the constraints 

(although optimality is not guaranteed)… 

a so-called “Lagrangian heuristic” method 
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The constraints of an IP may be partitioned in several ways 

 
A b

x
D e

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where { }| , nX x Dx e x Z+= ≥ ∈ , so that several Lagrangian dual problems 

may be defined, with duality gaps of various sizes.  (See Generalized 

Assignment Problem (GAP) ) 

 
“No free lunch” principle:  usually, the smaller the duality gap, the 

more difficult it is to solve the Lagrangian relaxation! 
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Surrogate Duality 

As in Lagrangian duality, nonnegative multipliers are defined, but used 

to aggregate the constraints: 

 0 & Ax b Ax bµ ≥ ≥ ⇒ µ ≥ µ  
 

Surrogate Relaxation: 
 
 ( ) ( ) { }:    min | ,S SP z cx Ax b x Xµ µ = µ ≥ µ ∈  
 

( )SP µ  is easily seen to be a relaxation, since  
 the objective is unchanged 
 the feasible region is enlarged 

 
Surrogate Dual Problem: 

 ( ){ }ˆ ˆ:     max | 0S SP z µ µ ≥  
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Lagrangian Duality 

Every choice of the Lagrangian multipliers λ≥0 yields a Lagrangian 

relaxation, i.e., a lower bound on the optimal value z. 

 

The Lagrangian dual problem is to choose multipliers to obtain the 

greatest lower bound, i.e., 

 ( ){ }ˆ:    max | 0L L LD z z= λ λ ≥  

This is, in effect, a maxi-min problem, since evaluating the dual 

objective function  ( )Lz λ  requires solving a minimization problem. 

 Note that ˆLz z≤  , i.e., ˆ 0Lz z− ≥ .  This nonnegative difference is called 

the duality gap. 
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Combinatorial or IP problems may be classified as 

•  “Easy” problems 
 polynomial-time algorithms exist 

 examples: shortest path problem 
 minimum spanning tree problem 
 transportation problem 
 assignment problem 
 
•  “Hard” problems 
 no polynomial-time algorithms are known 

 examples: traveling salesman problem 
 scheduling problems 
 quadratic & generalized assignment problems 
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Often a hard problem may be modeled as an easy problem with 

additional complicating constraints. 

Example:  Generalized Assignment Problem 

a multiple-choice problem, with additional machine capacity 

limits 

Example:  Shortest Hamiltonian Path Problem (like a traveling 

salesman problem except route is a path rather than a cycle) 

a minimum spanning tree problem, with node degrees at most 2. 


