

# in Mathematical Programming

©Dennis L. Bricker Dept of Mechanical & Industrial Engineering University of Iowa Consider a constrained optimization problem

$$P: \quad z = \min\left\{c(x) \mid x \in X \subseteq R^n\right\}$$

and a problem

$$\mathbf{P}^{\mathrm{R}}: \quad z^{R} = \min\left\{f\left(x\right) \mid x \in T \subseteq \mathbb{R}^{n}\right\}$$

The problem  $\mathbf{P}^{R}$  is a **relaxation** of problem **P** if:

•  $X \subseteq T$ , i.e., every *x* feasible in P is also feasible in P<sup>R</sup>,

and

• 
$$f(x) \le c(x)$$
  $\forall x \in X$ 

**Proposition:** If  $\mathbf{P}^{R}$  is a relaxation of  $\mathbf{P}$ , then its optimal value is a *lower* bound of the optimal value of  $\mathbf{P}$ :

$$z^R \leq z$$
.

## Notes:

• The solution  $z^{\mathbb{R}}$  of relaxation  $\mathbf{P}^{\mathbb{R}}$  provides a guaranteed estimate on the quality of a proposed solution of **P**: for any feasible  $x \in X$ , the maximum relative error is

$$\frac{c(x)-z^R}{z^R}$$

- Relaxations are most frequently used in branch-&-bound algorithms for combinatorial problems (providing a bound used in "fathoming" nodes of the search tree.)
- To be useful, **P**<sup>R</sup> must be more easily solved than **P**.
- If P is a *maximization* problem, then the second condition in the definition of a relaxation is f(x)≥c(x) ∀x∈X and as a result, the relaxation provides an *upper* bound on z.

#### Linear Programming Relaxation of Integer & Mixed-Integer LP

The most common relaxation of IP problems is the **LP relaxation**, in which integer restrictions are removed:

$$P: \ z = \min\left\{cx \mid Ax \ge b, x \in Z_+^n\right\}$$

where  $Z_{+}^{n}$  is the set of n-dimensional vectors of non-negative integers.  $P^{LP}: z^{LP} = \min\{cx \mid Ax \ge b, x \in R_{+}^{n}\}$ 

*Note*: in the definition of relaxation, let  

$$c(x) = cx = f(x)$$
 and  
 $X \equiv \{x \mid Ax \ge b, x \in Z_{+}^{n}\} \& T \equiv \{x \mid Ax \ge b, x \in R_{+}^{n}\}$ 
so that  $X \subset T$ 

I.e., while the objective functions of  $P \& P^{LP}$  are the same, relaxing the integer restrictions of an IP adds feasible solutions to the problem, so that a lower minimum might be found.

#### Lagrangian Relaxation of an Integer Programming Problem

Consider the IP problem

 $P: \quad z = \min\left\{cx \mid Ax \ge b, x \in X \subseteq Z_+^n\right\}$ 

Often, X is defined by additional linear constraints on the integer variables, i.e.,  $X = \{x \mid Dx \ge e, x \in Z_+^n\}$ .

Dropping the constraints  $Ax \ge b$  obviously satisfies the definition of a relaxation, since

- the first condition is satisfied (the feasible region is expanded)
- the second condition is trivially satisfied (the objective is unchanged).

To obtain a more useful relaxation, we change the objective function as well, using a vector of *Lagrangian multipliers*.

Suppose that A is  $m \times n$ , i.e., m constraints are being relaxed.

Let  $\lambda \in R^m_+$  be a vector of nonnegative numbers (*Lagrangian multipliers*),

one for each relaxed constraint.

For example,  $\lambda_i$  is the multiplier for constraint *i*:

$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, \quad \text{i.e.,} \quad \sum_{j=1}^{n} a_{ij} x_{j} - b_{i} \ge 0.$$

In the feasible region, then, the product of  $\lambda_i$  and  $\sum_{i=1}^{n} a_{ij} x_j - b_i$  is non-

negative, i.e., 
$$\lambda_i \left( \sum_{j=1}^n a_{ij} x_j - b_i \right) \ge 0$$
, so that  
$$\sum_{j=1}^n c_j x_j - \sum_{i=1}^m \lambda_i \left( \sum_{j=1}^n a_{ij} x_j - b_i \right) \le \sum_{j=1}^n c_j x_j$$

The *Lagrangian relaxation* of P is therefore defined to be  $P^{L}(\lambda): z^{L}(\lambda) = \min\{cx - \lambda(Ax - b) | x \in X\}$ 

since, as we have shown,

for any 
$$\lambda \ge 0$$
 and  $x \in X$ ,  $f(x) \equiv cx - \lambda(Ax - b) \le cx$ 

Note that outside the feasible region,

 $Ax - b \le 0 \Longrightarrow \lambda (Ax - b) \le 0$ 

so that the objective  $f(x) \equiv cx - \lambda(Ax - b)$  may be thought of as including

a penalty for violating the constraints.

## Lagrangian Duality

Every choice of the Lagrangian multipliers  $\lambda \ge 0$  yields a Lagrangian relaxation, i.e., a lower bound on the optimal value *z*.

The *Lagrangian dual problem* is to choose multipliers to obtain the greatest lower bound, i.e.,

$$D^{L}: \quad \hat{z}^{L} = \max\left\{z^{L}(\lambda) \mid \lambda \ge 0\right\}$$

This is, in effect, a *maxi-min* problem, since evaluating the dual objective function  $z^{L}(\lambda)$  requires solving a minimization problem.

Note that  $\hat{z}^{L} \leq z$ , i.e.,  $z - \hat{z}^{L} \geq 0$ . This nonnegative difference is called the *duality gap*.

## Lagrangian Dual Problem:

Find  $\lambda \ge 0$  so that the Lagrangian relaxation yields the *greatest lower bound* of *z*:

$$\hat{P}^{L}: \quad \hat{z}^{L} = \max\left\{z^{L}\left(\lambda\right) \mid \lambda \geq 0\right\}$$

Obviously,

$$z \ge \hat{z}^L \ge z^L \left( \lambda \right) \qquad \forall \lambda \ge 0$$

and the difference  $z - \hat{z}^L \ge 0$  is called the Lagrangian *duality gap*.

If  $\lambda^*$  is the optimal dual solution, then the solution  $x(\lambda^*)$  of the Lagrangian relaxation  $P^L(\lambda^*)$  is generally *infeasible* in the primal problem, i.e.,  $Ax(\lambda^*) \ge b$  is violated.

If  $x(\lambda^*)$  is feasible in the primal, is it optimal???

Sometimes  $x(\lambda^*)$  can be easily adjusted so as to satisfy the constraints (although optimality is not guaranteed)...

a so-called *"Lagrangian heuristic"* method

The constraints of an IP may be partitioned in several ways

$$\begin{bmatrix} A \\ \cdots \\ D \end{bmatrix} x \ge \begin{bmatrix} b \\ \cdots \\ e \end{bmatrix}$$

where  $X = \{x \mid Dx \ge e, x \in \mathbb{Z}_{+}^{n}\}$ , so that several Lagrangian dual problems may be defined, with duality gaps of various sizes. *(See Generalized Assignment Problem (GAP) )* 

**"No free lunch" principle**: usually, the smaller the duality gap, the more difficult it is to solve the Lagrangian relaxation!

## **Surrogate Duality**

As in Lagrangian duality, nonnegative multipliers are defined, but used to *aggregate* the constraints:

 $\mu \ge 0 \& Ax \ge b \Longrightarrow \mu Ax \ge \mu b$ 

#### Surrogate Relaxation:

 $P^{s}(\mu): \quad z^{s}(\mu) = \min\{cx \mid \mu Ax \ge \mu b, x \in X\}$ 

 $P^{S}(\mu)$  is easily seen to be a relaxation, since

- the objective is unchanged
- the feasible region is enlarged

Surrogate Dual Problem:

 $\hat{P}^{s}: \max\left\{\hat{z}^{s}\left(\mu\right) \mid \mu \geq 0\right\}$ 

## Lagrangian Duality

Every choice of the Lagrangian multipliers  $\lambda \ge 0$  yields a Lagrangian relaxation, i.e., a lower bound on the optimal value *z*.

The *Lagrangian dual problem* is to choose multipliers to obtain the greatest lower bound, i.e.,

$$D^{L}: \quad \hat{z}^{L} = \max\left\{z^{L}(\lambda) \mid \lambda \ge 0\right\}$$

This is, in effect, a *maxi-min* problem, since evaluating the dual objective function  $z^{L}(\lambda)$  requires solving a minimization problem.

Note that  $\hat{z}^{L} \leq z$ , i.e.,  $z - \hat{z}^{L} \geq 0$ . This nonnegative difference is called the *duality gap*. Combinatorial or IP problems may be classified as

# • "Easy" problems

polynomial-time algorithms exist

examples: shortest path problem minimum spanning tree problem transportation problem assignment problem

## • "Hard" problems

no polynomial-time algorithms are known

examples: traveling salesman problem scheduling problems quadratic & generalized assignment problems Often a hard problem may be modeled as an easy problem with additional complicating constraints.

## **Example**: Generalized Assignment Problem

a multiple-choice problem, with additional machine capacity limits

## **Example**: Shortest Hamiltonian Path Problem (like a traveling

salesman problem except route is a path rather than a cycle)

a minimum spanning tree problem, with node degrees at most 2.