The

Question

- Consider the problem faced by a contestant on a TV quiz show, in which there are six stages $(1, \ldots 6)$.
- At any stage, the person may choose to quit and receive payoff $\$ 2^{i-1}$, with a top prize of $\$ 64$.
- If the person chooses to continue, she is presented with a question which, if correctly answered, allows her to advance to the next stage (i+1), but if not correctly answered, forces her to quit with no payoff.
- The questions become progressively more difficult at each stage, of course, and she estimates that the probability that she can answer the question at stage i to be P_{i} where $P_{i+1}<P_{i}$.

1. Formulate a dynamic programming model to compute her optimal strategy.

- What are the states? \qquad
- What is the decision set for each state? \qquad
- What is the recursive definition of the optimal value function?

State Vector

i	$s[i]$	name
1	1	Active
2	0	Stopped

Decision Vector

i	$x[i]$	name
1	1	Continue
2	0	Stop

Random Variable

i	$d[i]$	name
1	1	Success
2	0	Failure

Optimal Value Function:

$f_{n}(s)=$ maximum expected reward if at stage n the current state is s
Recursive definition:

$$
\begin{aligned}
& f_{n}(0)=f_{n+1}(0) \quad \forall n=1,2, \ldots 6 \\
& f_{n}(1)=\max \begin{cases}\mathrm{R}[\mathrm{n}-1] \\
\mathrm{p}_{\mathrm{n}} f_{n}(1)+\left(1-p_{n}\right) f_{n}(0) & \sim \mathrm{x}=1 \text { (continue) }\end{cases}
\end{aligned}
$$

APL implementation of Optimal Value Function

```
        \(Z_{n} \mathrm{~F}\) N; t
[1] O
[2] O Optimal Value Function
[3] © for optimal stopping problem
[4] ©
[5] :if \(\gg N N\)
[6] \(Z_{n}(\) Reward[NN+1]), O,-BIG
[7] :else
[8] O Recursive definition of optimal value function
[9] \(z_{n}(P[N], 1-P[N])\) Maximize E
    ( \(\left.(s \times R e w a r d[N])^{\circ} . x(1-x)^{\circ} .+0 x \bar{d}\right)+(F N+1)\left[\right.\) TRANSITION \(\left.s^{\circ}, x x^{\circ}, x d\right]\)
[10] : endif
```

2. Specify values for $P_{i}, i=0,1, \ldots 6$ and compute the optimal strategy.

Stage	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\boldsymbol{P}\{$ success $\}$	0.8	0.7	0.6	0.5	0.4	0.3

Reward „ 1248163264

```
Quiz Show
```

Recursion type: forward

	- ---Stage			
s	$\mathrm{x}:$	6---		
1	19.2000	32.0000	32.0000	
0	0.0000	0.0000	0.0000	

Example calculation:

If $s=1$ and $x=1$, i.e., the contestant is still active and chooses to continue, the expected reward is

$$
\begin{aligned}
& 0.3 \times f_{7}(1)+0.7 \times f_{7}(0) \\
& 0.3 \times 64+0.7 \times 0=19.20
\end{aligned}
$$

---Stage 5---

s	$x:$	1	0
1	12.8000	16.0000	16.0000
0	0.0000	0.0000	0.0000

---Stage 4---

s	$x:$	1	0	Maximum
1	8.0000	8.0000	8.0000	
0	0.0000	0.0000	0.0000	

---Stage 3---

s	$x:$	1	0	Maximum
1	4.8000	4.0000	4.8000	
0	0.0000	0.0000	0.0000	

---Stage 2---

s	$\mathrm{x}:$	1	0	Maximum
1	3.3600	2.0000	3.3600	
0		0.0000	0.0000	0.0000

---Stage 1---

s	$x:$	1	0	Maximum
1	2.6880	1.0000	2.6880	
0		0.0000	0.0000	0.0000

Summary of Optimal Returns and Decisions

Stage 3

Current State	Optimal Decision	Optimal Value
Active	Continue	4.8000
Stopped	Continue Stop	0.0000

Stage 2

Current State	Optimal Decision	Optimal Value
Active	Continue	3.3600
Stopped	Continue	0.0000
	Stop	

Stage 1

Current State	Optimal Decision	Optimal Value
Active	Continue	2.6880
Stopped	Continue Stop	0.0000
	Stan	

The optimal strategy is therefore to continue playing until the contestant fails a question or reaches stage 4, at (assuming she is risk-neutral) she is indifferent toward stopping or continuing.

At stage 5, if she is still active, she should quit.

Expected reward at beginning of game: $\mathbf{\$ 2 . 6 8 8}$

