

- Consider the problem faced by a contestant on a TV quiz show, in which there are six stages (1, ...6).
- At any stage, the person may choose to quit and receive payoff \$2ⁱ⁻¹, with a top prize of \$64.
- If the person chooses to continue, she is presented with a question which, if correctly answered, allows her to advance to the next stage (i+1), but if not correctly answered, forces her to quit with no payoff.
- The questions become progressively more difficult at each stage, of course, and she estimates that the probability that she can answer the question at stage i to be P_i where $P_{i+1} < P_i$.

- 1. Formulate a dynamic programming model to compute her optimal strategy.
 - What are the states? _____
 - What is the decision set for each state? _____
 - What is the recursive definition of the optimal value function?

State Vector

i	s[i]	name
1	1	Acti ve
2	0	Stopped

Decision Vector

i	x[i]	name
1	1	Cont i nue
2	0	Stop

Random Variable

i	d[i]	name		
1	1	Success		
2	0	Fai I ure		

Optimal Value Function:

 $f_n(s)$ = maximum expected reward if at stage n the current state is s

Recursive definition:

$$f_n(0) = f_{n+1}(0) \quad \forall n = 1, 2, \dots 6$$

$$f_n(1) = \max \begin{cases} R[n-1] & \sim x=0 \text{ (stop)} \\ p_n f_n(1) + (1-p_n) f_n(0) & \sim x=1 \text{ (continue)} \end{cases}$$

APL implementation of Optimal Value Function

```
' z"F N; t
[11]
Γ21
       © Optimal Value Function
Г37
            for optimal stopping problem
       ©
Γ47
Γ51 : if N>NN
Γ6]
          z, (Reward[NN+1]), 0, -BIG
[7] : el se
[8]
          © Recursive definition of optimal value function
Г9Т
          z_{"}(P[N], 1-P[N]) Maximize_E
      ((s \times Reward[N])^{\circ}. \times (1-x)^{\circ}. + 0 \times d) + (F N+1)[TRANSITION s^{\circ}. \times x^{\circ}. \times d]
Γ107
      : endi f
```

2. Specify values for P_i , i=0,1,...6 and compute the optimal strategy.

Stage	1	_	3		J	6
P{success}	0.8	0.7	0.6	0.5	0.4	0.3

Reward , 1 2 4 8 16 32 64

Recursion type: forward

Example calculation:

If s=1 and x=1, i.e., the contestant is still active and chooses to continue, the expected reward is

$$0.3 \times f_7(1) + 0.7 \times f_7(0)$$

$$0.3 \times 64 + 0.7 \times 0 = 19.20$$

---<mark>Stage 5</mark>---

s `	\ x: 1	0	Maximum
1	12.8000	16.0000	16.0000
0	0.0000	0.0000	0.0000

---<mark>Stage 4</mark>---

S	/	x:	1	0	Maximum
1			8.0000	8.0000	8.0000
0	j		0.0000	0.0000	0.0000

---<mark>Stage 3</mark>---

s	\ x:	1	0	Maximum
1		4.8000	4.0000	4.8000
0	ĺ	0.0000	0.0000	0.0000

---<mark>Stage 2</mark>---

S	/	x:	1	0	Maximum
1			3.3600	2.0000	3.3600
0	ĺ		0.0000	0.0000	0.0000

---<mark>Stage 1</mark>---

S	\ x: 1	0	Maximum
1	2.6880	1.0000	2.6880
0	0.0000	0.0000	0.0000

Summary of Optimal Returns and Decisions

Stage 6

Current	Optimal	Optimal
State	Decision	Value
Active	Stop	32.0000
Stopped	Continue	0.0000
	Stop	

Stage 5

Current	Optimal	Optimal
State	Decision	Value
Active	Stop	16.0000
Stopped	Continue Stop	0.0000

Stage 4

Current	Optimal	Optimal
State	Decision	Value
Active	Continue	8.0000
	Stop	
Stopped	Continue	0.0000
	Stop	

Stage 3

Current	Optimal	Optimal
State	Decision	Value
Active	Continue	4.8000
Stopped	Continue	0.0000
	Stop	

Stage 2

Current	Optimal	Optimal
State	Decision	Value
Active	Continue	3.3600
Stopped	Continue	0.0000
	Stop	

Stage 1

	Current	Optimal	Optimal
_	State	Decision	Value
	Active	Continue	2.6880
	Stopped	Continue	0.0000
		Stop	

The **optimal strategy** is therefore to continue playing until the contestant fails a question or reaches stage 4, at (assuming she is risk-neutral) she is indifferent toward stopping or continuing.

At stage 5, if she is still active, she should quit.

Expected reward at beginning of game: \$2.688