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In queues which are modeled as birth-death processes,

both the times between arrivals
and the service times

must have exponential distributions.

Exponential distributions have coefficient of

variation equal to 1, i.e., m
E[T]
If, in an application, inter-arrival &/or service

times are either more or less regu/azs, what can
be done?

@D0enniz Bricker , U. of lowa, 1997
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We have seen that an M/E,/1 queue, for which
service times have Erlang-k distribution,

can be modeled as a (continuous-time) Markov
chain.

That is, the service consists of kK phases, each
with exponentially-distributed service time.

@D0enniz Bricker , U. of lowa, 1997
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If service time T has Erlang-k dist'n with

mean l/k L
then

-
Il
—

— Coefficient of variation = 1/‘.;?

Fhe coefficient of variation may be made as smalf
as we frke rhur 07 By increasing k.

@D0enniz Bricker , U. of lowa, 1997
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An Erlang-k random variable is a conveifition
of k random variables with exponential dist n,
and is more regufar than a random variable
with exponential distribution.

To approximate distributions which are
fess regudar, i.e., havecv. > |, wecan use a
Rrper-expanentral distribution.

P{T=t} = F{t)=p [1_.3-1141‘«] + (1_3)[1_3—;1.31;]

where 0< p<1.

@D0enniz Bricker , U. of lowa, 1997
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Hvper-Exponenti

Distribution

A hvper-exponential dist'n 1s a @#mixtire of
exponential distributions, with service rate p
defined by

and has coefficient of variation :1 and can he
made arbitrarily large.

@D0enniz Bricker , U. of lowa, 1997
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Arrivals are Poisson with rate 2 , and
service time has hyper—exponential dist'n

Fit) = P [1-e] + (1-B)[1-ebet]

Equivalently, suppose 2 types of customers,
Type 1 with service time distn Exp(p;)
Type 2 with service time distn Exp(p:)

where [} = fraction of customers that are type 1

@D0enniz Bricker , U. of lowa, 1997
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i=type of service being provided

where
=% in system

@D0enniz Bricker , U. of lowa, 1997
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Phase-type _ A distribution function H is
D _ phase-type with k phases

if it is 1:1— Bl} F, + (1— BE}BIFIE'FE + ...
+P1 Pz - -Prci F1@F:@. .. @F

where F; 15 exponential dist'n with rate p;

F;®F. is the convolution of F,; and F.,
0<Bi<l for i=1,2,..k-1, B =0

@D0enniz Bricker , U. of lowa, 1997
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1 2 3 4 k-1 k

-aQ--} seee

Think of the service facility as having k
stages, with a service time in stage J having
exponential dist'n (rate p;),

and upon completion of stage jJ, the service
is complete with probability (1-p;)
or customer enters stage j+1.

@D0enniz Bricker , U. of lowa, 1997
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i=phase of service
in progress

]= ¥ of customers
in the system

@D0enniz Bricker , U. of lowa, 1997
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Phase-type

Di

The Erlang & Hyper-exponential dist'ns
are both phase-type distributions.

Any arbitrary distribution can be approximated
as closely as desired by a phase-type dist'n.

@D0enniz Bricker , U. of lowa, 1997
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Suppose that service time T

is discrete, with P{T=al=1-§3

and P{T=b}=p , for pc(0,1).
That is, T = a+ (b-a)l
where P{I=1}=p , P{I=0}= 1-p .

Consider the distribution (1-p)Ey + p Ey @ Ey.
where Ey is Erlang-k’ with phase rate k'/a

E.. is Erlang-k” with phase rate k"/(b-a)

As k'—oo & k" —ce, this dist'n converges to that
of T.

@D0enniz Bricker , U. of lowa, 1997
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Using phase-type distributions, we can,
in principle, approximate any queue as
a continuous—-time Markov chain....

In practice, the state space of this
Markov chain may be large &/or complex,
and the balance equations intractable.

As the distributions become more regular,
i.e., coefficient of variation decreases, the
performance measures of the queueing system
usually improve. Ko

@D0enniz Bricker , U. of lowa, 1997



