Quadratic Criterion / Linear Dynamics

Consider a (finite) N-stage non-stationary Markov decision process with

- continuous state and decision variables,
- a convex quadratic cost at each stage (or concave return, if maximizing), and
- linear relationship between the future state and the current state $\&$ decisions.

In the most general case, if x_{n} is the vector of state variables and y_{n} the vector of action or decision variables, the cost at stage n is the quadratic function

$$
c_{n}\left(x_{n}, y_{n}\right)=x_{n} A_{n} x_{n}+x_{n} B_{n} y_{n}+y_{n} C_{n} y_{n}+d_{n} x_{n}+e_{n} y_{n}+f_{n}
$$

and the transition at stage n is defined by the linear function

$$
x_{n+1}=G_{n} x_{n}+H_{n} y_{n}+\xi_{n}
$$

where $\xi_{1}, \xi_{2}, \ldots \xi_{N}$ are independent random vectors such that

$$
\left|E\left(\xi_{n i}\right)\right|<\infty \quad \text { and } \quad\left|E\left(\xi_{n i} \xi_{n j}\right)\right|<\infty
$$

for all i, j, and n . (Here, $\xi_{n i}$ denotes the $\mathrm{i}^{\text {th }}$ element of the vector ξ_{n}.)

Note: independence of the random vectors means that the process is memoryless, or Markovian.
(i) See One-Dimensional QC/LD Problem

Suppose for each $n=1,2, \ldots N$, the matrix A_{n} is positive definite, the matrix $B_{n}=0$, and the matrix C_{n} is positive semidefinite (\Rightarrow convexity).

Then the optimal value function is quadratic of the form

$$
f_{n}(x)=x P_{n} x+q_{n} x+r_{n}
$$

where P_{n} is positive semidefinite, (so $f_{n}(x)$ is convex) and
the optimal decision rule is linear,

$$
y_{n}=W_{n} x_{n}+v_{n}
$$

for $n=1,2, \ldots N$.

The closed-form expressions for $P_{n}, q_{n}, r_{n}, W_{n}$ and v_{n} are quite messy! See the section on the one-dimensional QC/LD problem for a derivation of a special case.

Backward Recursive Computation of Arrays P, q, r, W, and v
 Let $P_{N+1}=A_{N+1}, q_{N+1}=d_{N+1}$, and $r_{N+1}=f_{N+1}$, and for $n=N, N-1, \ldots 2,1$: compute

Then $W_{n}=-\frac{1}{2} S_{n}^{-1} U_{n}$ and $v_{n}=\frac{1}{2} S_{n}^{-1} t_{n}$.

Cextainny Equivalence

Furthermore, the optimal decision rule for stage $n=1$ depends only upon the expected values of the distributions of the random vectors $\xi_{1}, \xi_{2}, \ldots \xi_{N}$. Thus the computations may be performed by replacing each ξ_{n} by its expected value μ_{n}, a result which is known as Certainty

Equivalence!

The major deficiency of the QC/LD model \& algorithm is the lack of ability to restrict the state and decision variables (e.g., nonnegativity).
(i) See the example of the multi-reservoir control problem for further discussion of imposing constraints.

Example: The following simple example suggests the validity of a certainty equivalence result for $Q C / L D$ problems.

Consider the problem of choosing y so as to minimize

$$
V(x, y)=E\left[c(g x+h y+\xi)^{2}\right]
$$

where

- $\mathrm{x}, \mathrm{g}, \mathrm{h}$, and c are numbers, and
- ξ is a random variable with mean μ and variance σ^{2}.

Then

$$
V(x, y)=\operatorname{ch}^{2} y^{2}+2 \operatorname{ch}(g x+\mu) y+c\left(g^{2} x^{2}+\sigma^{2}+\mu^{2}+2 g \mu x\right)
$$

We next compute the first and second derivatives of $V(x, y)$.

The first and second derivatives of V are

$$
\frac{\partial}{\partial x} V(x, y)=2 c^{2} y+2 \operatorname{ch}(g x+\mu)
$$

and

$$
\frac{\partial^{2}}{\partial x^{2}} V(x, y)=2 c h^{2}
$$

If $c>0$ and $h \neq 0, V$ is convex and the unique minimum of V is achieved at

$$
y=-\frac{g x+\mu}{h}=-\left(\frac{g}{h} x+\frac{\mu}{h}\right)
$$

Notes:

- The optimal value of y depends only upon the expected value of ξ.
- The optimal value of y is given by a linear decision rule, i.e., a linear function of x.

See Daniel P. Heyman \& Matthew J. Sobel, Stochastic Models in Operations Research, Volume II: Stochastic Optimization, McGraw-Hill Book Co., 1984, section 7-5.

The Holt-Modigliani-Muth-Simon (HMMS) QC/LD model for production planning has
state variables $\mathrm{X}_{\mathrm{n}}=\left(\mathrm{i}_{\mathrm{n}}, \mathrm{Z}_{\mathrm{n}}\right)$ where
$\mathrm{i}_{\mathrm{n}}=$ inventory level at stage n
$\mathrm{w}_{\mathrm{n}-1}=$ previous work force level
decision variables $y_{n}=\left(z_{n}, w_{n}\right)$ where
$z_{\mathrm{n}}=$ production level at stage n
$\mathrm{w}_{\mathrm{n}}=$ work force level at stage n

Expected cost function is

$$
\sum_{n} E\left[c\left(w_{n}-\alpha w_{n-1}\right)+h\left(i_{n}+z_{n}-D_{n}\right)+b\left(z_{n}\right)+d\left(\beta w_{n}-z_{n}\right)\right]
$$

with convex (linear or quadratic) functions
$c(\cdot)$ is cost of work force smoothing
$h(\cdot)$ is cost of holding inventory
$b(\cdot)$ is cost of production
$d(\cdot)$ is cost of overtime/undertime labor
and
α is retention rate for work force
β is production rate of a worker
The optimal solution is, of course, a linear decision rule, but one which may yield negative values of the decision variables!
C.C. Holt, F. Modigliani, J. F. Muth, and H. A. Simon, Planning Production, Inventories, and Work Force, Prentice-Hall, 1960.

