

Contents

🕼 Postman Problem in undirected network

Postman Problem in P directed network

🕼 Summary & References

Seven-Bridge Problem of Könegsberg posed by Swiss mathematician Leonhard Euler, 1736

Find a way in which a parade procession could cross all seven bridges exactly *once*.

River

Preget

page 4

Define:

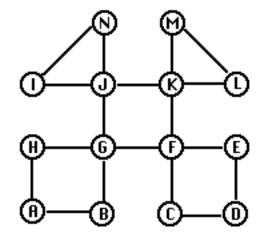
Euler path : a path through a graph which traverses every edge of the graph exactly once.

Euler tour: a circuit of a graph which traverses every edge of the graph *exactly once*, i.e., an Euler path beginning and ending at the same node.

Define:

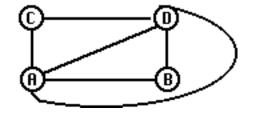
Degree of a node in an *undirected* graph is the number of incident edges of the node.

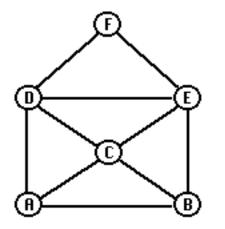
Indegree of a node in a *directed* graph is the number of edges *into* the node.
Outdegree of a node in a *directed* graph is the number of edges *from* the node.
Polarity of a node of a directed graph is the difference: *indegree - outdegree*



What is the degree of each node?

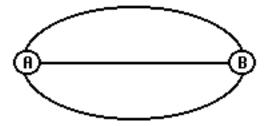
Do these graphs possess either Euler tours or Euler paths?

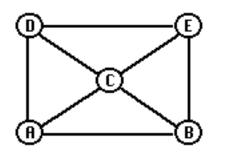




Do these graphs possess either Euler tours or Euler paths?

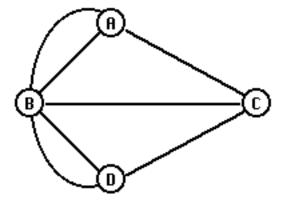
What is the degree of each node?





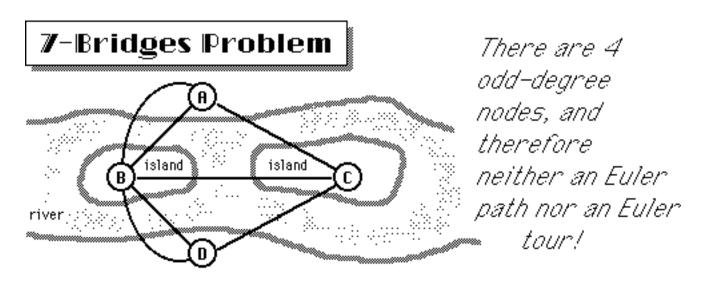
What is the degree of each node?

Do these graphs possess either Euler tours or Euler paths?



EULER'S THEOREM

- A connected *undirected* graph possesses
 - an Euler tour if & only if all nodes have even degree
 - an Euler path if & only if exactly two nodes have odd degree
- A connected *digraph* possesses
 - an Euler tour if & only if the polarity of each node is zero



Nodes **B** & **C** represent the islands Nodes **A** & **D** represent the two riverbanks Edges represent bridges

Finding an Euler Tour

Begin at any node.

Traverse the edges, deleting each as it is traversed. The choice of the edge from a node is arbitrary, except for the rule:

Never traverse an edge which is a bridge (an edge whose deletion would disconnect the graph).

Suppose that you hold a summer job as highway inspector.

You must periodically drive along the highways, checking on debris & the need for repairs.

If you live in town A, is it possible to find a round trip which takes you over each section of highway exactly once?

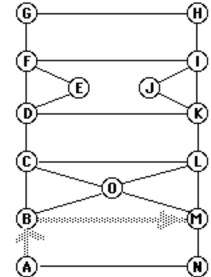


All nodes have even degree, so an Euler tour exists!

Suppose that we begin to construct an Euler tour by including edges AB and BM:

Then in choosing the next edge, we cannot choose edge MN, which has become a "bridge". Either MO or ML must be the next edge included in the tour!

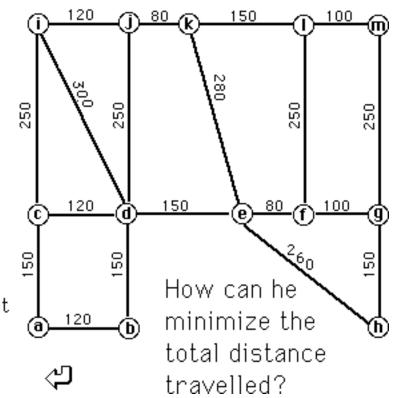
Ŷ



THE CHINESE Postman Problem

A mailman must deliver mail to residents on the streets shown.

He begins at node **a**, and must traverse each street at least once, and return to node **a**.



page 15

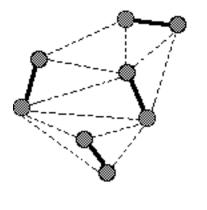
Solving the postman problem:

If an Euler tour exists, it is the optimal route. Otherwise,

add "artificial" edges, parallel to the existing edges, which will turn all odd-degree nodes into even-degree nodes. (There must be an even number of such odd-degree nodes.)
The edges to be added are found by a minimum length pairwise-matching algorithm. (In practice, this might be estimated by inspection, for a near-optimal solution.)

page 16

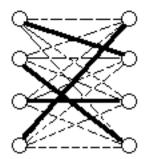
Matching Problem



Given a set of nodes, assign (match) each node to exactly one other node, so that the sum of the matching costs are minimized, where cost of matching i & j is C_{ij}

Matching Problem

If the graph is "bipartite", then this is the ordinary assignment problem, solvable by, for example, the "Hungarian Method".



In a bipartite network, the nodes may be partitioned into 2 sets, such that edge (i,j) exists only if nodes i & j are not contained in the same set.

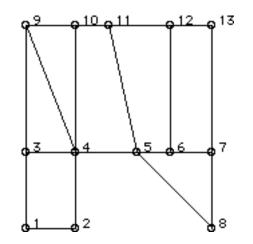
Matching Problem

For the more general (non-bipartite) matching problem, there is an "efficient" (i.e., polynomialtime) algorithm by J. Edmonds, which, however, is rather complicated to implement.

page 19

Matching Problem

Formulation: Define $X_{ij} = \begin{cases} 1 \text{ if nodes } i \& j \text{ are matched} \\ 0 \text{ otherwise} \end{cases}$ Minimize $\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{ij}X_{ij}$ subject to $\sum_{j\neq i} X_{ij} = 1, i=1,2, \dots n$ $X_{ij} \in \{0,1\}$ The odd-degree nodes 120 80 150 100 are: c, d, f, g, i, j, k, & l. 280 00 250 250 250 250 We need to compute the shortest path lengths between 120 150 80 100 п each pair of nodes from this set. 20 20 ន 120



@D.Bricker, U. of Iowa, 1998

8/22/00

Using Floyd's Algorithm for finding shortest paths:

Path Lengths															
f	Ñ	1	2	3	4	5	6	7	8	9	10	11	12	13	
r o m	1234567890 11123	0 120 270 420 600 680 400 520 600 750 850	120 270 300 380 480 450 450 450 450 450 450 730	$150 \\ 270 \\ 120 \\ 270 \\ 350 \\ 450 \\ 530 \\ 250 \\ 370 \\ 450 \\ 600 \\ 700 \\ \end{array}$	270 150 120 230 330 410 300 250 330 480 580	420 300 270 150 80 180 260 450 360 280 330 430	500 380 230 230 100 250 530 440 360 250 350	600 480 330 180 100 150 630 540 460 350 250		400 450 250 300 450 530 630 710 120 200 350 450	520 400 370 250 360 440 540 620 120 80 230 330	600 480 330 280 360 460 540 200 80 150 250	750 630 480 330 250 350 350 230 150 100	850 730 580 430 350 250 400 450 330 250 100 0	

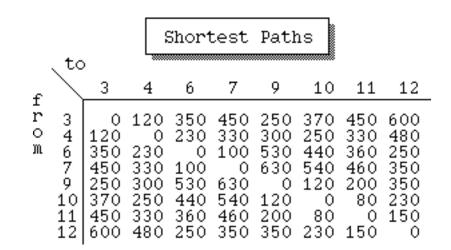
Predecessors

to 11 12 f r o m 3 3 5 5 5 5 5 6 3 4 6 2

Chinese Postman Problem in a Graph

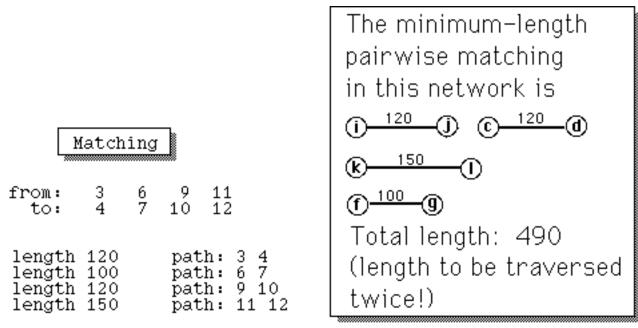
	L							
i:	3	4	6	7	9	10	11	12
Degree:	3	5	3	3	3	3	3	3

Odd-degree nodes



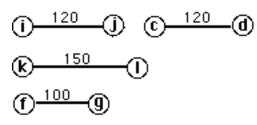
8/22/00

(not all edges are shown in the diagram!) We must find an optimal matching in a network with 8 nodes and edges between every pair (with length = the length of the shortest path in original network)

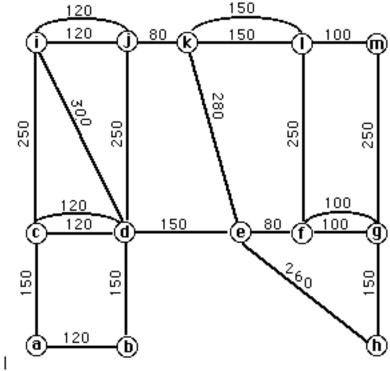


Total length of paths added: 490

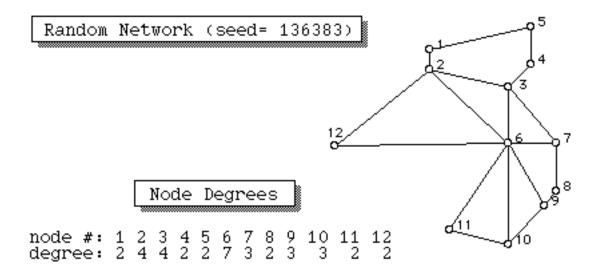
Add paths to the network:



The result is a network with only even-degree nodes. We need only now to find an Euler tour!



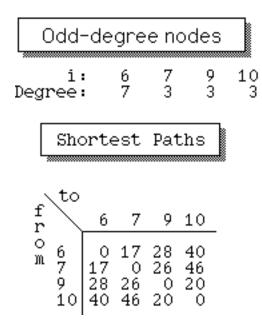
Example

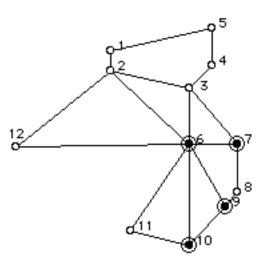


page 30

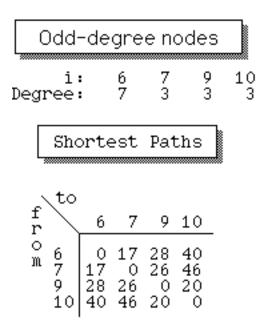
Shortest Path Lengths

<	to												
f	\backslash	1	2	3	4	5	6	7	8	9	10	11	12
r 0 m 1 1	123456789L0L12	0 87 49 48 65 88 88 53	8 29 41 45 57 68 80 45	37 29 12 27 22 47 50 62 74	49 41 12 15 34 59 62 74 86	37 45 27 49 55 74 77 89 90	48 40 22 49 0 17 35 40 40 62	65 28 40 55 17 26 57 79	83 75 47 59 74 35 19 7 27 49 97	76 68 50 27 28 26 20 42 90	88 62 74 89 40 46 27 20 0 22 102	88 62 74 89 40 57 49 42 22 0 102	53 45 74 86 90 62 79 97 90 102 102 0

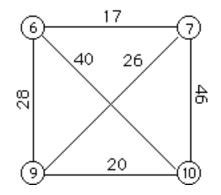




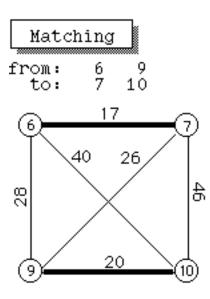
@D.Bricker, U. of Iowa, 1998

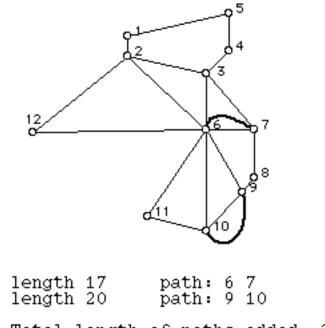


Minimum-weight matching to be solved in this network:



@D.Bricker, U. of Iowa, 1998

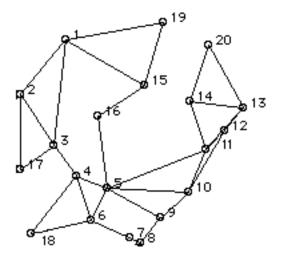




Total length of paths added: 37

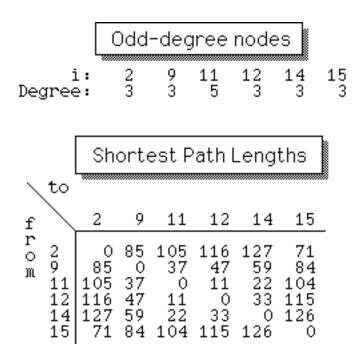
@D.Bricker, U. of Iowa, 1998

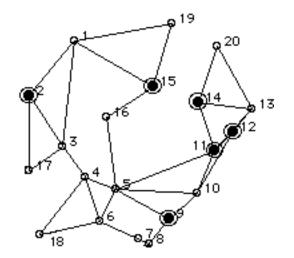
Random Network (seed= 454621)



f																				
r o	1	2	з	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
m.																				
1	0	31	46	63	77	83	102	107	104	113	124	135	148	146	40	65	64	95	44	172
2	31	0	27	44	58	64	83	88	85	94	105	116	129	127	71	90	33	76	75	153
з	46	27	0	17	31	37	56	61	58	67	78	89	102	100	86	63	19	49	90	126
4	63	44	17	0	14	20	- 39	44	41	50	61	-72	85	83	71	46	36	32	100	109
5	77	58	31	14	0	16	35	40	27	36	47	58	71	69	57	32	50	43	86	95
6	83	64	- 37	20	16	0	19	24	38	52	63	- 74	87	85	73	48	56	27	102	111
7	102	83	56	- 39	35	19	0	5	19	35	56	66	- 79	78	92	67	75	46	121	104
8	107	88	61	44	40	24	5	0	14	30	51	61	- 74	73	- 97	72	80	51	126	99
9	104	85	58	41	27	38	19	14	0	16	- 37	47	60	59	84	59	-77	65	113	85
10	113	94	67	50	36	52	35	30	16	0	21	31	44	43	93	68	86	79	122	69
11	124	105	78	61	47	63	56	51	37	21	0	11	24	22	104	79	97	90	133	48
12	135	116	89	72	58	- 74	66	61	47	31	11	0	13	- 33	115	90	108	101	144	45
13	148	129	102	85	71	87	79	-74	60	44	24	13	0	23	128	103	121	114	157	32
14	146	127	100	83	69	85	78	73	59	43	22	- 33	23	0	126	101	119	112	155	26
15	40	71	86	71	57	73	92	- 97	84	- 93	104	115	128	126	0	25	104	100	- 29	152
16	65	90	63	46	32	48	67	72	59	68	79	90	103	101	25	0	82	75	54	127
17	64	33	19	36	50	56	75	80	- 77	86	- 97	108	121	119	104	82	0	68	108	145
18	95	76	49	32	43	27	46	51	65	79	90	101	114	112	100	75	68	0	129	138
19	44	75	90	100	86	102	121	126	113	122	133	144	157	155	29	54	108	129	0	181
20	172	153	126	109	95	111	104	99	85	69	48	45	32	26	152	127	145	138	181	0
	I																			

Shortest Path Lengths ©D.BNCKER, O. OF 10W8, 1998

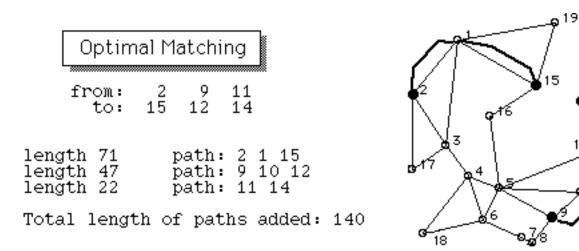




@D.Bricker, U. of Iowa, 1998

20

13



The augmented network now possesses an Euler tour, which solves the postman problem!

୍କ ଜ

Summary

- Solving the Postman Problem in an undirected network requires finding an optimal matching of the odd-degree nodes into pairs.
- Solving the Postman Problem in a directed network requires the solution of a transportation problem, with positive-polarity nodes as "sources" and negative-polarity nodes as "destinations".

In either case, the "cost" of a match or a shipment is the length of the shortest path between the two nodes.

