

Arrival Process

a stochastic process {N_t; t≥0} such that

- N_t is non-decreasing
- \bullet N_t increases by jumps only
- N_t is right-continuous
- N₀ = 0

Poisson Process

An arrival process {N_t; t≥0} such that:

- each jump is of magnitude 1
- for any s,t≥0, the difference N_{s+t} - N_t is independent of past history {N_u; u≤t}
- for any s,t≥0, the distribution of N_{s+t} - N_t is independent of t

For any s,t≥0, the distribution of $N_{s+t} - N_t$ is $P\{N_{s+t} - N_t = k\} = e^{-\lambda s} (\lambda s)^k / k!$ i.e. the distribution of number of arrivals in *any* interval of length **s** is **Poisson**.

The parameter λ is the **arrival rate**.

Time of Arrivals

Let {N_t; t≥0} be a Poisson process. Define another (discrete-parameter, continuous-value) stochastic process {T_k; k=1, 2, ...} by T_k = time of jump #k of N_t. For any n≥0, the distribution of the time between arrival #n and #n+1 is

(exponential distribution)

Memorylessness of the exponential distribution

 $P{T_1 > t+s | T_1 > t} = P{T_1 > s}, s,t \ge 0$ that is, knowing that an interarrival time has already lasted t time units does not alter the probability of its lasting another s time units. Superposition of Poisson Processes

Let {L_t; t≥0} and {M_t; t≥0} be two poisson processes with arrival rates λ and μ , respectively. The **superposition** of processes L_t and M_t is a new stochastic process N_t defined by N_t = L_t + M_t N_t is itself a Poisson process with arrival rate $v = \lambda + \mu$.

Decomposition of a Poisson process

Let $\{N_t; t \ge 0\}$ be a **Poisson** process

with rate λ .

Let {X_n; n=1,2,...} be a **Bernoulli**

process with probability p of success at each trial, and let $S_n = \#$ successes in first n trials.

Suppose that the nth trial is performed at the time T_n of the nth arrival, and define two new stochastic processes M_t (#successes) and L_t (# failures) by $M_t = S_{Nt}$, $L_{t} = N_{t} - M_{t}$ and

The processes M_t and L_t are **Poisson** with arrival rates $p\lambda$ and $(1-p)\lambda$, respectively. Compound Poisson Process

In a Poisson process, the jumps must be of magnitude 1; in the Compound Poisson process, jumps may be of any size (positive &/or negative). The magnitudes of successive jumps must be i.i.d. random variables, independent of **t**.

Example:

Arrivals of customers into a store form a Poisson process, and the amount of money spent by the nth customer is a random variable X_n. The stochastic process $\{Y_t; t \ge 0\}$ defined by Y_t = total sales during (0,t] is a compound Poisson process.