

Poisson Processes

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dlbricker@icaen.uiowa.edu

Arrival Process

a stochastic process $\{N_t; t \geq 0\}$
such that

- N_t is non-decreasing
- N_t increases by jumps only
- N_t is right-continuous
- $N_0 = 0$

Poisson Process

An arrival process $\{N_t; t \geq 0\}$
such that:

- each jump is of magnitude 1
- for any $s, t \geq 0$, the difference $N_{s+t} - N_t$ is independent of past history $\{N_u; u \leq t\}$
- for any $s, t \geq 0$, the distribution of $N_{s+t} - N_t$ is independent of t

For any $s, t \geq 0$, the distribution
of $N_{s+t} - N_t$ is

$$P(N_{s+t} - N_t = k) = e^{-\lambda s} (\lambda s)^k / k!$$

i.e. the distribution of number of
arrivals in *any* interval of length s
is Poisson.

The parameter λ is the **arrival rate**.

Time of Arrivals

Let $\{N_t; t \geq 0\}$ be a Poisson process.
Define another (discrete-parameter, continuous-value) stochastic process
 $\{T_k; k=1, 2, \dots\}$
by $T_k = \text{time of jump } \#k \text{ of } N_t$.

For any $n \geq 0$, the distribution of the time between arrival $\#n$ and $\#n+1$ is

$$\begin{aligned} P(T_{n+1} - T_n \leq t \mid T_1, T_2, \dots, T_n) &= \\ &= P\{ T_1 \leq t \} = 1 - e^{-\lambda t}, \quad t \geq 0 \end{aligned}$$

(exponential distribution)

Memorylessness of the exponential distribution

$$P\{T_1 > t+s \mid T_1 > t\} = P\{T_1 > s\}, \quad s, t \geq 0$$

that is, knowing that an interarrival time has already lasted t time units does not alter the probability of its lasting another s time units.

Superposition of Poisson Processes

Let $\{L_t; t \geq 0\}$ and $\{M_t; t \geq 0\}$ be two poisson processes with arrival rates λ and μ , respectively.

The **superposition** of processes L_t and M_t is a new stochastic process N_t defined by $N_t = L_t + M_t$

N_t is itself a Poisson process with arrival rate $v = \lambda + \mu$.

Decomposition of a Poisson process

Let $\{N_t; t \geq 0\}$ be a **Poisson** process
with rate λ .

Let $\{X_n; n=1,2,\dots\}$ be a **Bernoulli**
process with probability p of
success at each trial,
and let $S_n = \#$ successes in first n
trials.

Suppose that the n^{th} trial is performed at the time T_n of the n^{th} arrival, and define two new stochastic processes M_t (#successes) and L_t (# failures) by

$$M_t = S_{N_t},$$

and $L_t = N_t - M_t$

The processes M_t and L_t are Poisson with arrival rates $p\lambda$ and $(1-p)\lambda$, respectively.

Compound Poisson Process

In a Poisson process, the jumps must be of magnitude 1; in the Compound Poisson process, jumps may be of any size (positive &/or negative). The magnitudes of successive jumps must be i.i.d. random variables, independent of t .

Example:

Arrivals of customers into a store form a Poisson process, and the amount of money spent by the n^{th} customer is a random variable X_n .

The stochastic process $\{Y_t; t \geq 0\}$ defined by

Y_t = total sales during $(0, t]$
is a compound Poisson process.