Pathfollowing Algorithm for Linear Programming

© Dennis L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

Consider the primal/dual pair of LPs:

Primal

Minimize c^tx subject to Ax = b x ≥ 0

Dual

Maximize y b subject to yA≤ c^t

i.e.,

Maximize b^ty subject to A^ty≤c

Convert dual constraints to equalities:

Primal

Minimize c^tx subject to Ax = b $x \ge 0$

Dual

Maximize
$$b^{t}y$$
subject to $A^{t}y + z = c^{t}$
 $z \ge 0$

Use barrier functions to relax the non-negativity conditions:

rimal

Minimize
$$c \times - \mu \sum_{j=1}^{n} \ln(x_j)$$

subject to $A \times = b$

as
$$x \rightarrow 0$$
,
- μ ln $(x) \rightarrow \infty$

>ual

Maximize
$$b^t y + \mu \sum_{j=1}^n \ln(z_j)$$

subject to $A^t y + z = c^t$

Use Lagrange multipliers to relax the equality constraints:

Lagrangian Functions

$$L_{p}(x,y) = c^{t}x - \mu \sum_{j=1}^{n} ln(x_{j}) + y^{t}(Ax - b)$$

$$L_{D}(x,y,z) = b^{t}y + \mu \sum_{j=1}^{n} ln(x_{j}) - x^{t} (A^{t}y + z - c)$$

Pathfollowing for LP 11/4/2003 page 5 of 18

The optimality conditions may be written

$$\frac{\mathbf{a}_{\mathsf{L}}(\mathsf{x},\mathsf{x}_{\mathsf{A}})}{\mathbf{a}_{\mathsf{L}}(\mathsf{x},\mathsf{x}_{\mathsf{A}})} = 0, \quad \frac{\mathbf{a}_{\mathsf{L}}(\mathsf{x},\mathsf{x}_{\mathsf{A}})}{\mathbf{a}_{\mathsf{L}}(\mathsf{x},\mathsf{x}_{\mathsf{A}})} = 0$$

and

$$\frac{\mathbf{a}\mathsf{L}_\mathsf{D}(\mathsf{x},\mathsf{y},\mathsf{z})}{\mathbf{a}\mathsf{x}} = \mathsf{O}, \; \frac{\mathbf{a}\mathsf{L}_\mathsf{D}(\mathsf{x},\mathsf{y},\mathsf{z})}{\mathbf{a}\mathsf{y}} = \mathsf{O}, \; \frac{\mathbf{a}\mathsf{L}_\mathsf{D}(\mathsf{x},\mathsf{y},\mathsf{z})}{\mathbf{a}\mathsf{z}} = \mathsf{O}$$

These reduce to the following optimality conditions

To solve the nonlinear system of equations, we might use the *Newton-Raphson* method:

Given an initial approximate solution (x^0,y^0,z^0): an improved approximate solution is given

bУ

$$\begin{cases} x^1 = x^0 + \delta_x \\ y^1 = y^0 + \delta_y \\ z^1 = z^0 + \delta_z \end{cases}$$

where δ_x , δ_y , and δ_z are found by solving a linear system.

page 8 of 18

Notation

$$X = diag\{x_1, x_2, ..., x_n\}$$

$$Z = diag\{z_1, z_2, ..., z_n\}$$

$$e = [1, 1, ..., 1]$$

Then the constraints

$$x_j z_j = \mu, j = 1, 2, ...n$$

may be written

$$XZe = \mu e$$

We wish to solve the *nonlinear* system

$$\begin{cases} A \times -b = 0 \\ A^{t} y + z - c = 0 \\ X Z e - \mu e = 0 \end{cases}$$

Newton-Raphson Method: given (xº,yº,zº), solve the *linear* system

$$\begin{cases} A \delta_{x} & = -[Ax^{o} - b] \\ A^{t} \delta_{y} + \delta_{z} & = -[A^{t} y^{o} + z^{o} - c] \\ Z \delta_{x} & + X \delta_{z} & = -[X Z e - \mu e] \end{cases}$$

Pathfollowing for LP 11/4/2003 page 10 of 18

That is, solve

where
$$d_P = b - Ax^0$$
 \leftarrow primal infeasibility $d_D = A^t y^0 + z^0 - c$ \leftarrow dual infeasibility

and then compute the improved approximation

$$\leftarrow$$
 primal infeasibility

$$\begin{cases} x^1 = x^0 + \delta_x \\ y^1 = y^0 + \delta_y \\ z^1 = z^0 + \delta_z \end{cases}$$

Solving the linear system:

$$\delta_{x} = Z^{-1} [\mu e - XZ e - X \delta_{z}]$$

 $\delta_{z} = - d_{D} - A^{t} \delta_{y}$

$$\Longrightarrow \left[A \ Z^{-1} \mathbf{X} \ A^{\mathrm{t}} \right] \mathbf{\delta}_{\mathrm{y}} = \mathbf{b} - \mathbf{\mu} A \ Z^{-1} \mathbf{e} - A Z^{-1} \mathbf{X} \ d_{\mathrm{D}}$$

or
$$\boldsymbol{\delta}_{y} = \left[A \ Z^{-1} \boldsymbol{X} \ A^{\mathbf{t}} \right]^{-1} \left(b - \mu A \ Z^{-1} e - A Z^{-1} \boldsymbol{X} d_{D} \right)$$

Pathfollowing for LP 11/4/2003 page 12 of 18

Computing

$$\mathbf{\delta}_{\mathbf{y}} = \left[\mathbf{A} \ \mathbf{Z}^{-1} \mathbf{X} \ \mathbf{A}^{\mathbf{t}} \right]^{-1} \left(\mathbf{b} - \mathbf{\mu} \mathbf{A} \ \mathbf{Z}^{-1} \mathbf{e} - \mathbf{A} \mathbf{Z}^{-1} \mathbf{X} \, \mathbf{d}_{\mathbf{D}} \right)$$

by using matrix inversion is computationally costly for large problems...

other methods for solving the linear system for δ_{γ} are preferred.

After computing the step $(\delta_x, \delta_y, \delta_z)$,

$$\begin{cases} x^1 = x^0 + \delta_x \\ y^1 = y^0 + \delta_y \\ z^1 = z^0 + \delta_z \end{cases}$$

An alternative would be to go (almost) as far as possible in the x direction and the (y,z) direction:

$$\begin{cases} x^1 = x^0 + \alpha_P \delta_X \\ y^1 = y^0 + \alpha_D \delta_Y \\ z^1 = z^0 + \alpha_D \delta_Z \end{cases}$$

for stepsizes α_P and α_D , respectively.

$$\alpha_{p} = \tau \min_{j} \left\{ \frac{-\chi_{j}^{0}}{\delta_{\chi j}} : \delta_{\chi j} < 0 \right\}$$

$$\mathbf{\alpha}_{D} = \mathbf{\tau} \min_{j} \left\{ \frac{-z_{j}^{0}}{\delta_{zj}} : \delta_{zj} < \mathbf{0} \right\}$$

for $0 < \tau < 1$ e.g., $\tau = 0.995$ ($\tau = 1$ will result in one of the x and z variables reaching zero!)

Generally, only one Newton-Raphson step is used, so that the nonlinear system is only approximately solved.

This completes one iteration. As µ → 0, the values of x,y, and z will converge to the optimal primal and dual solutions.

The path followed by (x,y,z) is referred to as the *central path* and the algorithm as a *path-following* algorithm.

Pathfollowing for LP 11/4/2003 page 16 of 18

Reduction of μ :

$$\mu = \frac{c^t x^1 - b^t y^1}{\theta(n)}$$

suggested value of parameter $oldsymbol{ heta}$:

$$\mathbf{e}(n) = \begin{cases} n^2 & \text{if } n \le 5,000 \\ n\sqrt{n} & \text{if } n > 5,000 \end{cases}$$

Pathfollowing for LP 11/4/2003 page 17 of 18

Termination criterion:

$$\frac{c^{t} x^{k} - b^{t} y^{k}}{1 + \left| b^{t} y^{k} \right|} < \varepsilon$$

The number of iterations required is rather insensitive to the size noof the problem, and is usually between 20 and 80 for most problems.

