
(also known as the "Christmas Tree Problem")

## A one-stage stochastic inventory replenishment problem

characterized by

- a single opportunity to order the commodity before demand occurs
- inventory remaining after demand occurs is obsolete

Consider a problem with
a single commodity and
a single opportunity to replenish the inventory:
Notation:

- Current inventory level is $\boldsymbol{s}$.
- You must choose the amount $\boldsymbol{z}$ of commodity to add to the inventory, which will be delivered instantaneously.
- After replenishment, a demand for $\boldsymbol{D}$ units (a random variable) of the commodity will occur.
- Selling price is denoted by $\boldsymbol{r}$, and the purchase cost is $\boldsymbol{c}(<\boldsymbol{r})$. A salvage value $\boldsymbol{v}(\leq \mathrm{c})$ is received for any inventory remaining after demand has occurred.

Further notation:

- $\mathrm{a}=\mathrm{s}+\mathrm{z}=$ amount available to meet demand
- minimum $\{a, D\}=$ sales
- $(a-D)^{+} \equiv \max \{0, a-D\}=$ residual stock after demand occurs
- $(D-a)^{+} \equiv \max \{0, D-a\}=$ sales lost to excess demand
- net revenue $=$

$$
\begin{aligned}
B(a) & =r\left[a-(a-D)^{+}\right]-c z+v(a-D)^{+} \\
& =(r-c) a+c s-(r-v)(a-D)^{+}
\end{aligned}
$$

Revenue is a random variable, with expected value

$$
\begin{aligned}
E\{B(a)\} & =(r-c) a+c s-(r-v) E\left\{(a-D)^{+}\right\} \\
& =(r-c) a+c s-(r-v) \int_{0}^{a}(a-x) d F(x)
\end{aligned}
$$

Example: suppose that D is uniformly distributed over the interval $[\mu-\delta, \mu+\delta]$ where $0<\delta<\mu$.

Then

$$
\begin{aligned}
E\left\{(a-D)^{+}\right\} & =\int_{0}^{a}(a-x) d F(x) \\
& = \begin{cases}0 & \text { if } a \leq \mu-\delta \\
\frac{1}{2 \delta} \int_{\mu-\delta}^{a}(a-x) d x=\frac{(a-\mu+\delta)^{2}}{4 \delta} & \text { if } \mu-\delta<a \leq \mu+\delta \\
a-\mu & \text { if } a>\mu+\delta\end{cases}
\end{aligned}
$$

Then, denoting the expected benefit by $\Phi(s, a)$, we have

$$
\Phi(s, a)=(r-c) a+c s-(r-v)\left\{\begin{array}{cl}
0 & \text { if } a \leq \mu-\delta \\
\frac{(a-\mu+\delta)^{2}}{4 \delta} & \text { if } \mu-\delta<a \leq \mu+\delta \\
a-\mu & \text { if } \mu+\delta<a
\end{array}\right.
$$

Plot of $\Phi(0, a)$ with selling price $\mathrm{r}=100$, purchase cost $=\mathrm{c}=50$, salvage value $\mathrm{v}=20$, and D uniform in [50, 150] :


Within the interval $[\mu \pm \delta]$ the function $\Phi(0, a)$ has first derivative

$$
\frac{\partial}{\partial a} \Phi(0, a)=r-c-2(r-v) \frac{a-\mu+\delta}{4 \delta}
$$

and second derivative

$$
\frac{\partial^{2}}{\partial a^{2}} \Phi(0, a)=-\frac{(r-v)}{2 \delta}<0
$$

Therefore $\Phi(0, a)$ is a concave function, and simple calculus
shows that it has a maximum at

$$
a^{*}=(\mu-\delta)+\frac{2 \delta(r-c)}{r-v}
$$

(so that, in particular, given $r=100, c=50, v=20, \mu=100, \& \delta=50$ then the optimal inventory level is $a^{*}=900 / 8=112.5$ )

Value of Stochastic Solution (VSS):
If we were to have solved the problem of maximizing the benefit, assuming that $D$ assumes its expected value, then clearly the optimal value $a^{*}$ is the expected demand $\mu$ and the expected revenue using this replenishment level, assuming $s<\mu$, is

$$
\Phi(s, \mu)=(r-c) a+c s-(r-v) \frac{(a-\mu+\delta)^{2}}{4 \delta}
$$

Assuming the specified parameters, this expected revenue is $\Phi(0,100)=4000$, while the maximum expected benefit (using noninteger replenishment value $\left.\mathrm{a}^{*}=112.5\right)$ is $\Phi(0,112.5)=4062.50$. The Value of the Stochastic Solution is the difference,

$$
\Phi\left(s, a^{*}\right)-\Phi(s, \mu)=62.5
$$

In general, if the demand D has density function $f(x)$ and distribution function $F(x)$ with $F(0)=0$, then the expected revenue is

$$
\Phi(a, s)=(r-c) a+c s-(r-v) \int_{0}^{a}(a-x) f(x) d x
$$

In order to maximize this function with respect to the replenishment quantity $a$, then (since the upper limit of the integration is a function of $a$ ) we must use Leibnitz' Rule in order to find its derivative.

Leibnitz' Rule gives us the first derivative

$$
\begin{aligned}
\frac{d}{d a} \Phi(0, a) & =(r-c)-(r-v)\left[\int_{0}^{a} \frac{d}{d a}(a-x) f(x) d x+(a-a) \frac{d}{d a} a-(a-0) \frac{d}{d a} 0\right] \\
& =(r-c)-(r-v) F(a)
\end{aligned}
$$

Setting this derivative equal to zero yields the stationary point at the value $a$ such that

$$
F(a)=\frac{r-c}{r-v}
$$

That is, assuming that $a^{*}$ is not required to assume integer or discrete values,
the optimal replenishment quantity is

$$
a^{*}=F^{-1}\left(\frac{r-c}{r-v}\right)
$$

## Two-stage Stochastic Linear Programming with Recourse

The newsboy problem can also be formulated as a 2-stage stochastic LP with

- first-stage variable
$x=$ the replenishment quantity
- second-stage (recourse) variables

$$
y_{1}=\text { quantity sold }
$$

and
$y_{2}=$ quantity salvaged after demand occurs

The 2 -stage stochastic LP problem is

$$
\text { Maximize } \quad-c x+E_{D} Q(x, D)
$$

where

$$
\begin{aligned}
& Q(x, D)=\max _{y} r y_{1}+v y_{2} \\
& \text { subject to } y_{1}+y_{2} \leq x, \\
& \\
& \quad 0 \leq y_{1} \leq D, \quad 0 \leq y_{2}
\end{aligned}
$$

This is a problem with simple recourse: the solution of the second-stage problem can be written in closed form as

$$
y_{1}=\min \{x, D\} \quad \& \quad y_{2}=\max \{x-D, 0\}
$$

It is interesting to note that the form of the optimal solution to the newsboy problem is that of a

## Chance-constrained Linear Program:

## Minimize $x$

$$
P\{x \geq D\} \geq \alpha=\frac{r-c}{r-v}
$$

since

$$
P\{x \geq D\} \geq \alpha \quad \Leftrightarrow \quad F(x) \geq \alpha \quad \Leftrightarrow \quad x \geq F^{-1}(\alpha)
$$

