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In the original knapsack problem, the value of the contents

of the knapsack is maximized subject to a single capacity

constraint, for example weight.  In the multi-dimensional

knapsack problem, additional capacity constraints, such as

volume, must be enforced.
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Mathematical statement of 2-dimensional problem:
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The coefficients jv and ija are nonnegative real numbers, and the set jX may be

the binary set { }0,1 or the set of all nonnegative integers.

bi = capacity of knapsack with respect to measure i (e.g.,

i=1: weight, i=2: volume)

aij = measure i of item j, e.g., weight and volume
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Let's assume that the coefficients ija are nonnegative

integers, and the capacity limits ib are positive integers.

In the DP model for the 1-dimensional knapsack problem,

a stage is defined for each of the n items, and

the state of the system at stage j is the unused capacity

after items have been added in the previous stages. 
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In the multi-dimensional knapsack problem,

the state of the system is a vector of dimension m,

one element per capacity constraint,

for example  ( available weight,  available volume)
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Consider the two-dimensional knapsack problem with

data: n = # items = 6

Item j 1 2 3 4 5 6

Value vj 2 3 3 4 4 5

Weight a1j 1 2 1 3 2 3

Volume a2j 2 1 3 2 2 3

Maximum weight is 6 and maximum volume is 4.
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Define stages j =1, 2, ...6where

decision xj = 1 if item j is to be included in the knapsack,

else 0
state (s1, s2) where

{ }1 0,1, 6s ∈ … is the slack in the weight constraint, and

{ }2 0,1, 4s ∈ … is the slack in the volume constraint. 

Thus the state space contains 7×5=35 elements.
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Optimal value function
Using a backward recursion and imagining that we begin

by deciding whether to include item #6 and end by deciding

whether to include item #1,

( )1 2,jf s s = maximum total value of items j, j−1, …1 which

can be included if the knapsack if the weight and

volume are restricted to 1s and 2s , respectively.

We aim, of course, is to determine the value of ( )6 6,4f .
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Recursion:
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APL definition of optimal value function nf

Definition of state & decision vectors:

Definition of constants
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---Stage 1---
s      \ x:    0         1  | Maximum
0   0  |      0.00 ¯99999.99|      0.00
0   1  |      0.00 ¯99999.99|      0.00
0   2  |      0.00 ¯99999.99|      0.00
0   3  |      0.00 ¯99999.99|      0.00
0   4  |      0.00 ¯99999.99|      0.00
1   0  |      0.00 ¯99999.99|      0.00
1   1  |      0.00 ¯99999.99|      0.00
1   2  |      0.00      2.00|      2.00
1   3  |      0.00      2.00|      2.00
1   4  |      0.00      2.00|      2.00
2   0  | 0.00 ¯99999.99|      0.00
2   1  |      0.00 ¯99999.99|      0.00
2   2  |      0.00      2.00|      2.00
2   3  |      0.00      2.00|      2.00
2   4  |      0.00      2.00|      2.00
3   0  |      0.00 ¯99999.99|      0.00
3 1  |      0.00 ¯99999.99|      0.00
3   2  |      0.00      2.00|      2.00
3   3  |      0.00      2.00|      2.00
3   4  |      0.00      2.00|      2.00
4   0  |      0.00 ¯99999.99|      0.00
4   1  |      0.00 ¯99999.99|      0.00
4   2  |      0.00      2.00|      2.00
4   3  |      0.00      2.00|      2.00
4   4  |      0.00      2.00|      2.00
5   0  |      0.00 ¯99999.99|      0.00
5   1  |      0.00 ¯99999.99|      0.00
5   2  |      0.00      2.00| 2.00
5   3  |      0.00      2.00|      2.00
5   4  |      0.00      2.00|      2.00

s      \ x:    0         1  | Maximum

6   0  |      0.00 ¯99999.99|      0.00
6   1  |      0.00 ¯99999.99|      0.00
6   2  |      0.00 2.00|      2.00
6   3  |      0.00      2.00|      2.00
6   4  |      0.00      2.00|      2.00

We begin with the computation

of ( )1f i at stage 1, i.e.,

we consider that only item #1

remains to be added. 

Recall that

Item j 1

Value vj 2

Weight a1j 1

Volume a2j 2
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---Stage 2---

s   \ x:    0         1  | Maximum
0   0  |      0.00 ¯99999.99|      0.00
0   1  |      0.00 ¯99999.99|      0.00
0   2  |      0.00 ¯99999.99|     0.00
0   3  |      0.00 ¯99999.99|      0.00
0   4  |      0.00 ¯99999.99|      0.00
1   0  |      0.00 ¯99999.99|      0.00
1   1  |      0.00 ¯99999.99|      0.00
1   2  |      2.00 ¯99999.99|      2.00
1   3  |      2.00 ¯99999.99|      2.00
1   4  |      2.00 ¯99999.99|      2.00
2   0  |      0.00 ¯99999.99|      0.00
2   1  |      0.00      3.00|      3.00
2   2  |      2.00      3.00|      3.00
2   3  |      2.00      3.00|      3.00
2   4  |      2.00 3.00|      3.00
3   0  |      0.00 ¯99999.99|      0.00
3   1  |      0.00      3.00|      3.00
3   2  |      2.00      3.00|      3.00
3   3  |      2.00      5.00|      5.00
3   4  |      2.00      5.00|      5.00
4   0  |  0.00 ¯99999.99|      0.00
4   1  |      0.00      3.00|      3.00
4   2  |      2.00      3.00|      3.00
4   3  |      2.00      5.00|      5.00
4   4  |      2.00      5.00|      5.00
5   0  |      0.00 ¯99999.99|      0.00
5 1  |      0.00      3.00|      3.00
5   2  |      2.00      3.00|      3.00
5   3  |      2.00      5.00|      5.00
5   4  |      2.00      5.00|      5.00

s   \ x:    0         1  | Maximum
6   0  |      0.00 ¯99999.99|      0.00
6   1  |      0.00      3.00|      3.00
6   2  |      2.00      3.00|      3.00
6   3  |      2.00      5.00|      5.00
6   4  |      2.00      5.00|      5.00

Next we imagine that only items
#1 & 2 remain to be added to
the knapsack, and compute
their optimal value, ( )2f i where

Item j 2

Value vj 3

Weight a1j 2

Volume a2j 1
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---Stage 3---
s   \ x:    0         1  | Maximum

0   0  |      0.00 ¯99999.99|      0.00
0   1  |     0.00 ¯99999.99|      0.00
0   2  |      0.00 ¯99999.99|      0.00
0   3  |      0.00 ¯99999.99|      0.00
0   4  |      0.00 ¯99999.99|      0.00
1   0  |      0.00 ¯99999.99|      0.00
1   1  |      0.00 ¯99999.99|      0.00
1   2 |      2.00 ¯99999.99|      2.00
1   3  |      2.00      3.00|      3.00
1   4  |      2.00      3.00|      3.00
2   0  |      0.00 ¯99999.99|      0.00
2   1  |      3.00 ¯99999.99|      3.00
2   2  |      3.00 ¯99999.99|      3.00
2   3  |      3.00      3.00|      3.00
2   4  |      3.00      3.00|      3.00
3   0  |      0.00 ¯99999.99|      0.00
3   1  |      3.00 ¯99999.99|      3.00
3   2  |      3.00 ¯99999.99|      3.00
3   3  |      5.00      3.00|    5.00
3   4  |      5.00      6.00|      6.00
4   0  |      0.00 ¯99999.99|      0.00
4   1  |      3.00 ¯99999.99|      3.00
4   2  |      3.00 ¯99999.99|      3.00
4   3  |      5.00      3.00|      5.00
4   4  |      5.00      6.00|      6.00
5   0  |      0.00 ¯99999.99|      0.00
5   1  |      3.00 ¯99999.99|      3.00
5   2  |      3.00 ¯99999.99|      3.00
5   3  |      5.00      3.00|      5.00
5   4  |      5.00      6.00|      6.00

s   \ x:    0 1  | Maximum
6   0  |      0.00 ¯99999.99|      0.00
6   1  |      3.00 ¯99999.99|      3.00
6   2  |      3.00 ¯99999.99|      3.00
6   3  |      5.00      3.00|      5.00
6   4  |      5.00      6.00|      6.00

Item j 3

Value vj 3

Weight a1j 1

Volume a2j 3
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---Stage 4---
s   \ x:    0         1  | Maximum

0   0  |      0.00 ¯99999.99|      0.00
0   1  |      0.00 ¯99999.99|      0.00
0   2  |      0.00 ¯99999.99|      0.00
0 3  |      0.00 ¯99999.99|      0.00
0   4  |      0.00 ¯99999.99|      0.00
1   0  |      0.00 ¯99999.99|      0.00
1   1  |      0.00 ¯99999.99|      0.00
1   2  |      2.00 ¯99999.99|      2.00
1   3  |      3.00 ¯99999.99|      3.00
1   4  |      3.00 ¯99999.99|      3.00
2   0  |      0.00 ¯99999.99|      0.00
2   1  |      3.00 ¯99999.99|      3.00
2   2  |      3.00 ¯99999.99|      3.00
2   3  |      3.00 ¯99999.99|      3.00
2   4  |      3.00 ¯99999.99| 3.00
3   0  |      0.00 ¯99999.99|      0.00
3   1  |      3.00 ¯99999.99|      3.00
3   2  |      3.00      4.00|      4.00
3   3  |      5.00      4.00|      5.00
3   4  |      6.00      4.00|      6.00
4   0  |      0.00 ¯99999.99|      0.00
4   1  |      3.00 ¯99999.99|      3.00
4   2  |      3.00      4.00|      4.00
4   3  |      5.00      4.00|      5.00
4   4  |      6.00      6.00|      6.00
5   0  |      0.00 ¯99999.99|      0.00
5   1  |      3.00 ¯99999.99|      3.00
5   2  |      3.00      4.00|      4.00
5   3  |      5.00      7.00|      7.00
5   4  |      6.00      7.00|      7.00

s   \ x:    0         1  | Maximum
6   0  |      0.00 ¯99999.99|      0.00
6   1 |      3.00 ¯99999.99|      3.00
6   2  |      3.00      4.00|      4.00
6   3  |      5.00      7.00|      7.00
6   4  |      6.00      7.00|      7.00

Item j 4

Value vj 4

Weight a1j 3

Volume a2j 2
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---Stage 5---
s   \ x:    0         1  | Maximum

0   0  |      0.00 ¯99999.99|      0.00
0   1  |      0.00 ¯99999.99|      0.00
0   2  |      0.00 ¯99999.99|      0.00
0   3  |      0.00 ¯99999.99|      0.00
0   4  |      0.00 ¯99999.99|      0.00
1   0  |      0.00 ¯99999.99|      0.00
1   1  |      0.00 ¯99999.99|      0.00
1   2  |      2.00 ¯99999.99|      2.00
1   3  |      3.00 ¯99999.99|      3.00
1   4  |      3.00 ¯99999.99|      3.00
2   0  |      0.00 ¯99999.99|      0.00
2   1  |      3.00 ¯99999.99|      3.00
2   2  |      3.00      4.00|      4.00
2   3  |      3.00      4.00|      4.00
2   4  |      3.00      4.00|      4.00
3   0  |      0.00 ¯99999.99|      0.00
3   1  |      3.00 ¯99999.99|      3.00
3   2  |      4.00      4.00|      4.00
3   3  |      5.00      4.00|      5.00
3   4  |      6.00      6.00|      6.00
4   0  |      0.00 ¯99999.99|      0.00
4   1  |      3.00 ¯99999.99|      3.00
4   2  |   4.00      4.00|      4.00
4   3  |      5.00      7.00|      7.00
4   4  |      6.00      7.00|      7.00
5   0  |      0.00 ¯99999.99|      0.00
5   1  |      3.00 ¯99999.99|      3.00
5   2  |      4.00      4.00|      4.00
5  3  |      7.00      7.00|      7.00
5   4  |      7.00      8.00|      8.00

s   \ x:    0         1  | Maximum
6   0  |      0.00 ¯99999.99|      0.00
6   1  |      3.00 ¯99999.99|      3.00
6   2  |      4.00      4.00|      4.00
6   3  |      7.00      7.00|      7.00
6   4  |      7.00      8.00|      8.00

Item j 5

Value vj 4

Weight a1j 2

Volume a2j 2
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---Stage 6---
s   \ x:    0         1  | Maximum

0   0  |      0.00 ¯99999.99|   0.00
0   1  |      0.00 ¯99999.99|      0.00
0   2  |      0.00 ¯99999.99|      0.00
0   3  |      0.00 ¯99999.99|      0.00
0   4  |      0.00 ¯99999.99|      0.00
1   0  |      0.00 ¯99999.99|      0.00
1   1  |      0.00 ¯99999.99|      0.00
1   2  |      2.00 ¯99999.99|      2.00
1   3  |      3.00 ¯99999.99|      3.00
1   4  |      3.00 ¯99999.99|      3.00
2   0  |      0.00 ¯99999.99|      0.00
2   1  |      3.00 ¯99999.99|      3.00
2   2  |      4.00 ¯99999.99|      4.00
2   3  |      4.00 ¯99999.99|      4.00
2   4  |      4.00 ¯99999.99|      4.00
3   0  |      0.00 ¯99999.99|      0.00
3   1  |      3.00 ¯99999.99|      3.00
3   2  |      4.00 ¯99999.99|      4.00
3   3  | 5.00      5.00|      5.00
3   4  |      6.00      5.00|      6.00
4   0  |      0.00 ¯99999.99|      0.00
4   1  |      3.00 ¯99999.99|      3.00
4   2  |      4.00 ¯99999.99|      4.00
4   3  |      7.00      5.00|      7.00
4 4  |      7.00      5.00|      7.00
5   0  |      0.00 ¯99999.99|      0.00
5   1  |      3.00 ¯99999.99|      3.00
5   2  |      4.00 ¯99999.99|      4.00
5   3  |      7.00      5.00|      7.00
5   4  |      8.00      8.00|      8.00

s   \ x:    0         1  | Maximum
6   0  |      0.00 ¯99999.99|      0.00
6   1  |      3.00 ¯99999.99|      3.00
6   2  |      4.00 ¯99999.99|      4.00
6   3  |      7.00      5.00|      7.00
6   4  |      8.00      8.00| 8.00

Since we want only the value of
( )6 6, 4f , only the last row of this

table is necessary!

Item j 6

Value vj 5

Weight a1j 3

Volume a2j 3



Multidimensional Knapsack page 16 D.Bricker, U. of Iowa, 2001

Optimal value is   8.00
There are 2 optimal solutions

Optimal Solution No. 1

stage      state  decision
¯¯¯¯¯      ¯¯¯¯¯  ¯¯¯¯¯¯¯¯

6      6   4   Omit
5      6   4  Include
4      4   2  Include
3      1   0   Omit
2      1   0   Omit
1      1   0   Omit
0      1   0

Weight= 5, Volume = 4

Optimal Solution No. 2

stage      state  decision
¯¯¯¯¯      ¯¯¯¯¯  ¯¯¯¯¯¯¯¯

6      6   4  Include
5      3   1   Omit
4      3   1   Omit
3      3   1   Omit
2      3   1  Include
1      1   0   Omit
0      1   0

Weight= 5, volume= 4



Multidimensional Knapsack page 17 D.Bricker, U. of Iowa, 2001

Note that there are ( ) ( )1 21 1b b+ × + elements in the state space,

or in general, ( )
1

1
m

i
i

b
=

+∏ elements,

which for even modest values of ib can be quite large --

the so-called "curse of dimensionality"—

and make dynamic programming computations prohibitive.
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The dimension of the state space can be reduced to 1 by

solving a one-dimensional knapsack problem which is a

relaxation of the original two-dimensional knapsack

problem, that is,

the feasible region of the two-dimensional knapsack

problem is contained within the feasible region of the

relaxation. 
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Two approaches for relaxing constraints are

Lagrangian Relaxation,

in which only one constraint is kept (unchanged) and the

objective includes a penalty term for violation of the other.

Surrogate Relaxation,

in which a nonnegative combination of the original

constraints are used, but the objective function is

unchanged.
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Reducing Dimensionality by Lagrangian Relaxation

We relax, i.e., no longer enforce, one of the capacity restrictions,

and introduce a Lagrangian multiplier λ which we will interpret as

the value ("shadow price") of one unit of the relaxed capacity.

For example, in our two-dimensional knapsack problem, we will

no longer impose the volume restriction-- instead, we place a

value λ on a unit of volume so that the value of including item j

will be reduced from jv to ( )2j jv aλ− . 
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It can easily be shown that the optimal value of the

resulting one-dimensional knapsack, i.e.,

( )2 2 2 2
1 1 1

1 1
1

subject to 

,   1,

n n n

j j j j j j j
j j j

n

j j
j

j j

Maximize v x b a x v a x b

a x b

x X j n
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=
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∈ =

∑ ∑ ∑
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…

λ λ λ

is an upper bound on, i.e., at least as large as, the optimal value

of the original two-dimensional problem. 

The Lagrangian Dual problem is to select a value of λ so that this

upper bound is as small as possible.
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A crude search algorithm for Lagrangian dual:

Step 0. Initialize λ = 0.

Step 1. Solve the one-dimensional Lagrangian relaxation to find

all optimal solutions ( )*x λ and the associated volumes

( )*
2

1

n

j j
j

a x λ
=
∑ .  Let m & M be the minimum and maximum

volumes, respectively. 

Step 2. If m≤b2≤M, STOP.  If the volume ( )*
2

1

n

j j
j

a x λ
=
∑ of a solution

is exactly that available, b2, then that solution x*(λ) is

optimal for the original problem. Otherwise a duality gap

exists and none of the solutions ( )*x λ are optimal in the

original problem
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Step 3. If b2<m, i.e., the volume restriction is violated by all

optima, increase the "shadow price" λ  placed on a unit of

volume, while if b2>M, i.e., the volume restriction is

"slack", decrease λ.  Return to Step 1.

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

Example:  Relax the volume restriction of the 2-dimensional

knapsack problem above, with Lagrange multiplier initial

value λ = 0. The results are shown below.
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---Stage 1---
s \ x:   0      1  | Maximum
0  |  0.00  ¯99.99|  0.00
1  |  0.00    2.00|  2.00
2  |  0.00    2.00|  2.00
3  |  0.00    2.00|  2.00
4  |  0.00    2.00|  2.00
5  |  0.00    2.00|  2.00
6  |  0.00    2.00|  2.00

---Stage 2---
s \ x:     0     1  | Maximum
0  |  0.00   ¯99.99|  0.00
1  |  2.00   ¯99.99|  2.00
2  |  2.00     3.00|  3.00
3  |  2.00     5.00|  5.00
4  |  2.00     5.00|  5.00
5  |  2.00     5.00|  5.00
6  |  2.00     5.00|  5.00

---Stage 3---
s \ x:  0        1  | Maximum
0  |  0.00   ¯99.99|  0.00
1  |  2.00     3.00|  3.00
2  |  3.00     5.00|  5.00
3  |  5.00     6.00|  6.00
4  |  5.00   8.00|  8.00
5  |  5.00     8.00|  8.00
6  |  5.00     8.00|  8.00

---Stage 4---
s \ x:   0       1  | Maximum
0  |  0.00   ¯99.99|  0.00
1  |  3.00   ¯99.99|  3.00
2  |  5.00   ¯99.99|  5.00
3  |  6.00     4.00|  6.00
4  | 8.00     7.00|  8.00
5  |  8.00     9.00|  9.00
6  |  8.00    10.00| 10.00

---Stage 5---
s \ x:  0        1  | Maximum
0  |  0.00   ¯99.99|  0.00
1  |  3.00   ¯99.99|  3.00
2  |  5.00     4.00|  5.00
3  |  6.00     7.00|  7.00
4  |  8.00     9.00|  9.00
5  |  9.00    10.00| 10.00
6  | 10.00    12.00| 12.00

---Stage 6---
s \ x:  0        1  | Maximum
6  | 12.00    12.00| 12.00
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*** Optimal value is 12.00 ***
There are 2 optimal solutions

Optimal Solution No. 1

stage  state  decision
6      6   Omit
5 6  Include
4 5  Include
3 4  Include
2 3  Include
1 2  Include
0      1

Volume used by this solution: 10

Optimal Solution No. 2

stage  state  decision
6 6  Include
5 5  Include
4      4   Omit
3 4  Include
2 3  Include
1 2  Include
0      1

Volume used by this solution: 11
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Because both solutions exceed the volume capacity  (which is

only 4 units), the Lagrange multiplier λ must be increased.

Suppose we increase the multiplier to the value 1.00, i.e., each

unit of volume has a "shadow price" of $1.00.

Item j 1 2 3 4 5 6

Value vj 2 3 3 4 4 5

2j jv aλ− 0 2 0 2 2 2

Weight a1j 1 2 1 3 2 3

Volume a2j 2 1 3 2 2 3
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---Stage 1---
s \ x:  0       1  | Maximum
0  |  0.00  ¯99.99|  0.00
1  |  0.00    0.00|  0.00
2  |  0.00    0.00|  0.00
3  |  0.00    0.00|  0.00
4  |  0.00    0.00|  0.00
5  |  0.00    0.00|  0.00
6  |  0.00   0.00|  0.00

---Stage 2---
s \ x:  0       1  | Maximum
0  |  0.00  ¯99.99|  0.00
1  |  0.00  ¯99.99|  0.00
2  |  0.00    2.00|  2.00
3  |  0.00    2.00|  2.00
4  |  0.00    2.00|  2.00
5  |  0.00    2.00|  2.00
6  |  0.00  2.00|  2.00

---Stage 3---
s \ x:  0       1  | Maximum
0  |  0.00  ¯99.99|  0.00
1  |  0.00    0.00|  0.00
2  |  2.00    0.00|  2.00
3  |  2.00    2.00|  2.00
4  |  2.00    2.00|  2.00
5  |  2.00    2.00|  2.00
6  |  2.00 2.00|  2.00

---Stage 4---
s \ x:  0       1  | Maximum
0  |  0.00  ¯99.99|  0.00
1  |  0.00  ¯99.99|  0.00
2  |  2.00  ¯99.99|  2.00
3  |  2.00    2.00|  2.00
4  |  2.00    2.00|  2.00
5  |  2.00    4.00|  4.00
6  |  2.00 4.00|  4.00

---Stage 5---
s \ x:  0      1  | Maximum
0  |  0.00 ¯99.99|  0.00
1  |  0.00 ¯99.99|  0.00
2  |  2.00   2.00|  2.00
3  |  2.00  2.00|  2.00
4  |  2.00  4.00|  4.00
5  |  4.00  4.00|  4.00
6  |  4.00  4.00|  4.00

---Stage 6---
s \ x:0     1  | Maximum
6  |  4.00  4.00|  4.00
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The result: seventeen optimal solutions!

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0
2 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0
3 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1
4 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0
5 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1
6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
Vol. 3 5 6 3 5 6 8 4 6 7 4 6 7 5 5 7 8

The optimal value in each case is  $8, i.e.,

value of knapsack ($4) + value of 4 units of volume ($4).
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Notice that, of the 17 solutions of the relaxed problem,

2 solutions (#8 & 11) use exactly 4 units of volume

satisfying a complementary slackness condition

1

0
n

i ij j
j

b a xλ
=

 
− =

 
∑

2 solutions (#1 & 4) use less (and are therefore feasible), while

the remaining 13 solutions exceed the 4 unit volume

restriction and are infeasible.

The 2 solutions satisfying the complementary slackness condition

are optimal in the original problem.  The other two feasible

solutions (#1 & 4) have value $7 and are not optimal!
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Suppose that we relax the weight restriction (with "shadow price"

λ = 0) and impose the volume restriction:
---Stage 1---

s \ x:0     1  | Maximum
0  |     0 ¯9999|     0
1  |     0 ¯9999|     0
2  |     0     2|     2
3  |     0     2|     2
4  |     0     2|     2

---Stage 2---
s \ x:0  1  | Maximum
0  |     0 ¯9999|     0
1  |     0     3|     3
2  |     2     3|     3
3  |     2     5|     5
4  |     2     5|     5

---Stage 3---
s \ x:0     1  | Maximum
0  |     0 ¯9999|     0
1  |     3 ¯9999|     3
2  |     3 ¯9999|     3
3  |     5     3|     5
4  |     5     6|     6

---Stage 4---
s \ x:0     1  | Maximum
0  |     0 ¯9999|     0
1  |     3 ¯9999|     3
2  |     3     4|     4
3  |     5     7|     7
4  |     6 7|     7

---Stage 5---
s \ x:0     1  | Maximum
0  |     0 ¯9999|     0
1  |     3 ¯9999|     3
2  |     4     4|     4
3  |     7     7|     7
4  |     7     8|     8

---Stage 6---
s \ x:0     1  | Maximum
0  |   0 ¯9999|     0
1  |     3 ¯9999|     3
2  |     4 ¯9999|     4
3  |     7     5|     7
4  |     8     8|     8
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*** Optimal value is      8 ***
*** There are 2 optimal solutions ***

Optimal Solution No. 1

stage  state  decision
6      4   Omit
5      4  Include
4      2  Include
3      0   Omit
2      0   Omit
1      0   Omit
0      0

Optimal Solution No. 2

stage  state  decision
6      4  Include
5      2   Omit
4      2   Omit
3      0   Omit
2      0  Include
1      0   Omit
0 0

Both of these solutions use exactly 4 units of volume, and are

therefore feasible.  In this case, the complementary slackness

condition is again satisfied (0×0=0) and it therefore follows that

both must be optimal in the original problem!
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Important!
In the example shown,

at most one adjustment was required for the Lagrangian

multiplier, and

no duality gap was encountered,

whereas in general

many such adjustments are required, and

the optimal solution of the 2-dimensional problem might

never be found! 
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Reducing Dimensionality by Surrogate Relaxation

Choose nonnegative multipliers µ1 and µ2, so that

( ) ( )
1 1 1 1 1 1

1 1
1 1 2 2 1 1 2 2

2 2 2 2 2 2
1 1

n n

j j j j
j j

j j jn n

j j j j
j j

a x b a x b
a a x b b

a x b a x b

µ µ
µ µ µ µ

µ µ

= =

= =

 ≤ ≤ 
 ⇒ ⇒ + ≤ + 
 ≤ ≤
  

∑ ∑
∑

∑ ∑



Multidimensional Knapsack page 34 D.Bricker, U. of Iowa, 2001

In general, for an m-dimensional knapsack problem, the

surrogate relaxation is

( )
1

1 1 1

subject to  ,

,   1,
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As was the case with Lagrangian relaxation, for any m≥0 the

optimal solution of the relaxation (a one-dimensional knapsack

problem) may not be feasible in the two-dimensional problem,

but the optimal value is an upper bound on the optimum of the

two-dimensional problem. 

The Surrogate Dual problem is the problem of finding the

surrogate multipliers µ which will yield the least upper bound.

Theory is available that guarantees that the surrogate duality
gap is no larger than, and is often smaller than, the Lagrangian

duality gap.


