“\ulti-Dimensiona,

KIlapsack Problem

In the original knapsack problem, the value of the contents
of the knapsack is maximized subject to a single capacity
constraint, for example weight. In the multi-dimensional
knapsack problem, additional capacity constraints, such as

volume, must be enforced.
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Mathematical statement of 2-dimensional problem:

n
Maximize Zv]x]

=

subject to Za X, S b

Za21xj -

x, X, F lL..n

The coefficients v, and a; are nonnegative real numbers, and the set X ; may be
the binary set {O,l} or the set of all nonnegative integers.

b, = capacity of knapsack with respect to measure i (e.g.,
i=1: weight, i=2: volume)
a; = measure i of item j, e.g., weight and volume
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pynamic programming

Let's assume that the coetficients ¢, are nonnegative

integers, and the capacity limits 4, are positive integers.

In the DP model for the 1-dimensional knapsack problem,
a stage is defined for each of the n items, and
the state of the system at stage jis the unused capacity

after items have been added in the previous stages.
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In the multi-dimensional knapsack problem,
the state of the system is a vector of dimension m,
one element per capacity constraint,

for example (available weight, available volume)
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Consider the two-dimensional knapsack problem with

data: n=#items =6
Value vj

=N W
W = W
N W s
N N A
W W u

2
Weight a;; 1
2

Volume az;j

Maximum weight is 6 and maximum volume is 4.
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Define stages j=1, 2, ...6where

decision x; =1 if item j is to be included in the knapsack,
else O
state (s;, S,) where

s, 0{0,1,...4 is the slack in the weight constraint, and

s, 0{0,1,...4 is the slack in the volume constraint.

Thus the state space contains 7x5=35 elements.
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Optimal value function
Using a backward recursion and imagining that we begin
by deciding whether to include item #6 and end by deciding
whether to include item #1,

f,(s,.s,) = maximum total value of items j, j—1I, ... I which

can be included if the knapsack if the weight and

volume are restricted to s, and s,, respectively.

We aim, of course, is to determine the value of f,(6,4).
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Recursion:

f].(sl,sz) :?%{%),1(} {v].xj +f (S1 —a,;X;,s, —azjxj)} ,J =6,5,...1

s,,s,) =0 for all nonnegative integers s, and s
0 \P1292 g g 1 2

Multidimensional Knapsack page 8 D.Bricker, U. of lowa, 2001



APL definition of optimal value function f,

v z«<F N3t
A

A Optimal Value Functlion for 2-D knapsack problem
A

1f N=0 A Terminal conditions

z<{((pPs)p0),-BIG A Big penalty for infeasible states
relse

& recurslion

z«MAX (((pPs)pPO)e . +V[N]Ixx)}+(F N-1)[TRANSITION s°.-W[N]xx]
rendif

v

Definition of state & decision vectors:

s«,{(0,16)e=.,0,14
Xx+<0 1

Definition of constants
Ve 2 3 3 4 4 5
We (12132 3),7(21 322 3)
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---Stage 1---

S \ Xx: 1 | Maxinmum
0 0 | 0. 00 99999. 99| 0. 00
0 1 | 0. 00 99999. 99| 0. 00
0 2 | 0. 00 99999. 99| 0. 00
0 3 | 0. 00 99999. 99| 0. 00
0 4 | 0. 00 99999. 99| 0. 00
1 0 | 0. 00 99999. 99| 0. 00
1 1 | 0. 00 99999. 99| 0. 00
1 2 | 0. 00 2. 00| 2.00
1 3 | 0. 00 2. 00| 2.00
1 4 | 0. 00 2. 00| 2.00
2 0 | 0. 00 99999. 99| 0. 00
2 1 | 0. 00 99999. 99| 0. 00
2 2 | 0. 00 2. 00| 2.00
2 3 | 0. 00 2. 00| 2.00
2 4 | 0. 00 2. 00| 2.00
3 0 | 0. 00 99999. 99| 0. 00
3 1 | 0. 00 99999. 99| 0. 00
3 2 | 0. 00 2. 00| 2.00
3 3 | 0. 00 2. 00| 2.00
3 4 | 0. 00 2. 00| 2.00
4 0 | 0. 00 99999. 99| 0. 00
4 1 | 0. 00 99999. 99| 0. 00
4 2 | 0. 00 2. 00| 2.00
4 3 | 0. 00 2. 00| 2.00
4 4 | 0. 00 2. 00| 2.00
5 0 | 0. 00 99999. 99| 0. 00
5 1 | 0. 00 99999. 99| 0. 00
5 2 | 0. 00 2. 00| 2.00
5 3 | 0. 00 2. 00| 2.00
5 4 | 0. 00 2. 00| 2.00
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S \ Xx: 0 1 | Maxinmm
6 0 | 0.00 99999. 99| 0. 00
6 1 | 0.00 99999. 99| 0. 00
6 2 | 0. 00 2. 00| 2.00
6 3 | 0. 00 2. 00| 2.00
6 4 | 0. 00 2. 00| 2.00

We begin with the computation

of f, () at stage 1, i.e.,

we consider that only item #1

remains to be added.

Recall that

Item j 1

Value vj

2
Weight a;; 1
2

Volume az;j
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---Stage 2---

S \ Xx: 0 1 | Maxinmum S \x: S 1 | Maximum
_ 6 0 | 0.00 99999. 99 0. 00
0 0 | 0.00 99999. 99 0. 00
_ 6 1 | 0. 00 3. 00| 3.00
0 1 | 0.00 ~99999. 99 0. 00
_ 6 2 | 2.00 3. 00| 3.00
0 2 | 0.00 ~99999. 99 0. 00
_ 6 3 | 2.00 5. 00| 5. 00
0 3 | 0.00 ~99999. 99 0. 00 6 4 | 5 00 5. 00) o 00
0 4 | 0.00 ~99999. 99 0. 00 ' ' '
1 0 | 0.00 ~99999. 99 0. 00
1 1 | 0.00 ~99999. 99 0. 00 . . .
1 2 | 2.00 ~99999. 99| 2.00 Next we imagine that only items
1 3 | 2.00 T99999. 99 2.00 ;
1 4 | 2.00 799999. 99| > 00 #1 & 2 remain to be added to
2 0 | 0.00 ~99999. 99 0. 00
> 1] 0 00 3. 00) s 0o the knapsack, and compute
2 2 | 2.00 3. 00| 3.00 : imal val (.) wher
2 3 | 2.00 3. 00| 3. 00 their optimal value, f, cre
2 4 | 2.00 3. 00| 3.00
3 0 | 0.00 ~99999. 99 0. 00 .
3 1 | 0. 00 3. 00 3.00 Item j 2
3 2 | 2.00 3. 00| 3.00
3 3 | 2.00 5. 00| 5. 00
3 4 | 2.00 5. 00| 5. 00 Value vj 3
4 0 | 0.00 ~99999. 99 0. 00
4 1 | 0. 00 3. 00| 3.00 Weiaht aii 2
4 2 2.00 3. 00| 3.00 g L
4 3 | 2.00 5. 00| 5. 00
4 4 | 2. 00 5. 00| 5. 00 Volume az; 1
5 0 | 0.00 ~99999. 99 0. 00
5 1 | 0. 00 3. 00| 3.00
5 2 | 2.00 3. 00| 3.00
5 3 | 2.00 5. 00| 5. 00
5 4 | 2.00 5. 00| 5. 00
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---Stage 3---

Maxi num

AP OWONRFPORAARWNPOPAPWNPOMARWNRPRPOPMAWNPOPMWNE,O
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- |~

Multidimensional Knapsack
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X: 0 1 | Maximum

DO O

A WNEFLO

0.00 99999. 99|

\

I

| 3.00 799999. 99
| 3.00 799999. 99
| 5. 00 3. 00|
| 5. 00 6. 00|
Item J 3
Value vj

3
Weight a;; 1
3

Volume az;j
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---Stage 4---

Maxi num
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Multidimensional Knapsack
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X: 0 1 | Maxinmum

DO O

A WNEFLO

0.00 99999. 99|

\

I

| 3.00 799999. 99
| 3. 00 4. 00|
| 5. 00 7. 00|
| 6. 00 7. 00|
Item J 4
Value vj

4
Weight a;; 3
2

Volume az;j
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---Stage 5---

Maxi mum
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Multidimensional Knapsack
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Value vj 4
Weight a;; 2
2

Volume az;j

D.Bricker, U. of Towa, 2001

\ Xx: 0 1 | Maxinmum
6 0 | 0.00 99999. 99| 0. 00
6 1 | 3.00 99999. 99| 3.00
6 2 | 4. 00 4. 00| 4. 00
6 3 | 7.00 7. 00| 7. 00
6 4 | 7.00 8. 00| 8. 00



---Stage 6---

Maxi mum

QOO Ui PRERRERROWWOWWWWNNNNNRERPRERPERPERPPRPOOOOO
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Multidimensional Knapsack
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S \ Xx: 0 1 | Maxinmum
6 0 | 0.00 99999. 99| 0. 00
6 1 | 3.00 99999. 99| 3.00
6 2 | 4.00 99999. 99| 4.00
6 3 | 7.00 5. 00| 7.00
6 4 | 8. 00 8. 00| 8. 00

Since we want only the value of

/;(6,4), only the last row of t
table is necessary!

Value vj S
Weight a;; 3
3

Volume az;j
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Optimal value is 8. 00
There are 2 optiml solutions

Optinal Sol ution No. 1 Optimal Sol ution No. 2
stage state decision st age state decision
6 6 4 Omt 6 6 4 Include
5 6 4 | ncl ude 5 3 1 O t
4 4 2 | ncl ude 4 3 1 O t
3 1 0 Omt 3 3 1 Oni t
2 1 0 Onmt 2 3 1 Include
1 1 0 Omnt 1 1 0 Oni t
0 1 0 0 1 0
Weight=5, Volune = 4 Wi ght = 5, vol ume= 4
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Note that there are (1+5,)x(1+b,) elements in the state space,
or in general, |_| (1+5,) elements,
i=1

which for even modest values of 5, can be quite large --

the so-called "curse of dimensionality™—

and make dynamic programming computations prohibitive.

Multidimensional Knapsack page 17 D.Bricker, U. of lowa, 2001



The dimension of the state space can be reduced to 1 by
solving a one-dimensional knapsack problem which is a

relaxation of the original two-dimensional knapsack

problem, that is,

the feasible region of the two-dimensional knapsack

problem is contained within the feasible region of the

relaxation.
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Two approaches for relaxing constraints are

» Lagrangian Relaxation,
in which only one constraint is kept (unchanged) and the
objective includes a penalty term for violation of the other.
= Surrogate Relaxation,
in which a nonnegative combination of the original
constraints are used, but the objective function is

unchanged.
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Lagrangian relketon

Reducing Dimensionality by Lagrangian Relaxation

We relax, i.e., no longer enforce, one of the capacity restrictions,
and introduce a Lagrangian multiplier A which we will interpret as

the value ("shadow price") of one unit of the relaxed capacity.

For example, in our two-dimensional knapsack problem, we will
no longer impose the volume restriction-- instead, we place a

value A on a unit of volume so that the value of including item j

will be reduced from v, to (vj —/la2j).
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It can easily be shown that the optimal value of the
resulting one-dimensional knapsack, i.e.,

Maximize Zn:vjxj+/][ Zazj ]j Zn:(v -Aa, )xj +Ab,

i

subject to Zal X, <h
j=1

x; UX,, F 1,..n
is an upper bound on, i.e., at least as large as, the optimal value

of the original two-dimensional problem.

The Lagrangian Dual problem is to select a value of A so that this

upper bound is as small as possible.
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A crude search algorithm for Lagrangian dual:

Step 0. Initialize A = 0.
Step 1. Solve the one-dimensional Lagrangian relaxation to find

all optimal solutions x*(/]) and the associated volumes
Za2 X ()I) Let m & M be the minimum and maximum
j=1

volumes, respectively.

Step 2. If m<b.<M, STOP. If the volume Zaz X (A) of a solution

j=1
is exactly that available, bo, then that solution x*(A) is
optimal for the original problem. Otherwise a duality gap

exists and none of the solutions x*(/]) are optimal in the

original problem
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Step 3. If bo<m, i.e., the volume restriction is violated by all

"

optima, increase the "shadow price" A placed on a unit of
volume, while if bo>M, i.e., the volume restriction is

"slack", decrease A. Return to Step 1.

HENEEEENEEENNEEEN

Example: Relax the volume restriction of the 2-dimensional

knapsack problem above, with Lagrange multiplier initial

value A = 0. The results are shown below.
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---Stage 1---

s\ x: 0 1 | Maxinmum ---Stage 4---

O | 0.00 99.99] 0.00 s \ Xx: 0 1 | Maximum
1 | 0.00 2.00] 2.00 O | 0.00 99.99] 0.00

2 | 0.00 2.00] 2.00 1 | 3.00 99.99] 3.00

3 | 0.00 2.00] 2.00 2 | 5.00 99.99] 5.00

4 | 0.00 2.00] 2.00 3 | 6.00 4.00] 6.00

5 | 0.00 2.00] 2.00 4 | 8.00 7.00] 8.00

6 | 0.00 2.00] 2.00 5 | 8.00 9.00] 9.00

6 | 8.00 10. 00| 10.00
---Stage 2---

s\ x: 0 1 | Maxinmum ---Stage 5---

O | 0.00 99.99] 0.00 s\ x: 0 1 | Maximum
1 | 2.00 99.99] 2.00 O | 0.00 99.99] 0.00

2 | 2.00 3.00] 3.00 1 | 3.00 99.99] 3.00

3 | 2.00 5.00/ 5.00 2 | 5.00 4.00] 5.00

4 | 2.00 5.00] 5.00 3 | 6.00 7.00] 7.00

5 | 2.00 5.00/ 5.00 4 | 8.00 9.00, 9.00

6 | 2.00 5.00/ 5.00 5 | 9.00 10. 00| 10.00

6 | 10.00 12.00] 12.00
---Stage 3---

s\ xx O 1 | Maxinmum ---Stage 6---

O | 0.00 99.99] 0.00 s\ x: 0 1 | Maximum
1 | 2.00 3.00] 3.00 6 | 12.00 12.00] 12.00

2 | 3.00 5.00/ 5.00

3 | 5.00 6. 00/ 6.00

4 | 5.00 8.00, 8.00

5 | 5.00 8.00] 8.00

6 | 5.00 8.00] 8.00
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*** Optimal value is 12.00 ***
There are 2 optimal sol utions

Optinmal Solution No. 1

stage state decision

6 6 Omt

5 6 | ncl ude
4 5 | ncl ude
3 4 | ncl ude
2 3 | ncl ude
1 2 | ncl ude
0 1

Vol une used by this solution: 10

Optimal Sol ution No. 2

stage state decision

6 6 | ncl ude
5 5 | ncl ude
4 4 Omt

3 4 | ncl ude
2 3 | ncl ude
1 2 | ncl ude
0 1

Vol une used by this solution: 11
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Because both solutions exceed the volume capacity (which is
only 4 units), the Lagrange multiplier A must be increased.
Suppose we increase the multiplier to the value 1.00, i.e., each

unit of volume has a "shadow price" of $1.00.

Value vj 2 3 3 4 4 5
v, —Aa,, O 2 0 2 2 2
Weighta;; 1 2 1 3 2 3
Volumeaz; 2 1 3 2 2 3
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---Stage 1--- ---Stage 4---

s\ xx 0 1 | Maxinmum s\ xx 0 1 | Maximum
O | 0.00 99.99] 0.00 O | 0.00 99.99] 0.00
1 | 0.00 0.00] 0.00 1 | 0.00 99.99] 0.00
2 | 0.00 0.00] 0.00 2 | 2.00 99.99] 2.00
3 | 0.00 0.00] 0.00 3 | 2.00 2.00] 2.00
4 | 0.00 0.00] 0.00 4 | 2.00 2.00] 2.00
5 | 0.00 0.00] 0.00 5 | 2.00 4.00] 4.00
6 | 0.00 0.00] 0.00 6 | 2.00 4.00] 4.00

---Stage 2--- ---Stage 5---

s\ xx O 1 | Maxinmum s\ xx O 1 | Maxinmum
O | 0.00 99.99] 0.00 O | 0.00 99.99] 0.00
1 | 0.00 99.99] 0.00 1 | 0.00 99.99] 0.00
2 | 0.00 2.00] 2.00 2 | 2.00 2.00] 2.00
3 | 0.00 2.00] 2.00 3 | 2.00 2.00] 2.00
4 | 0.00 2.00] 2.00 4 | 2.00 4.00] 4.00
5 | 0.00 2.00] 2.00 5 | 4.00 4.00] 4.00
6 | 0.00 2.00] 2.00 6 | 4.00 4.00 4.00

---Stage 3--- ---Stage 6---

s\ xx O 1 | Maxinmum s\ x:0 1 | Maximum
O | 0.00 99.99] 0.00 6 | 4.00 4.00/ 4.00
1 | 0.00 0.00] 0.00
2 | 2.00 0.00] 2.00
3 | 2.00 2.00] 2.00
4 | 2.00 2.00] 2.00
5 | 2.00 2.00] 2.00
6 | 2.00 2.00] 2.00
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The result: seventeen optimal solutions!

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 o 1ro0o01o010o60 10 o0 1 0 0 O0 I O
2 1 1111110 OO0 1 1 I O 0 0 O
3 o o01o0o0110 o001 o0 O 1 0 0 0 1
4 1 11600001 11 O O O I O 0 O
5 o o0o011111 11 o0 O O O 1 1 1
6 o 0 060 060 0 0 0O 1 1 T T 1T 1T 1
Vo. 3.5 6 3 5 6 8 4 6 7 4 6 7 5 5 T 8

The optimal value in each case is $8, i.e.,

value of knapsack ($4) + value of 4 units of volume ($4).
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Notice that, of the 17 solutions of the relaxed problem,
= 2 solutions (#8 & 11) use exactly 4 units of volume

satisfying a complementary slackness condition

/](bl. —Zaijxj\ =0
=)

= 2 solutions (#1 & 4) use less (and are therefore feasible), while
» the remaining 13 solutions exceed the 4 unit volume

restriction and are infeasible.

The 2 solutions satisfying the complementary slackness condition
are optimal in the original problem. The other two feasible

solutions (#1 & 4) have value $7 and are not optimal!
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Suppose that we relax the weight restriction (with "shadow price"

A = 0) and impose the volume restriction:

---Stage 1--- ---Stage 4---

s \ x:0 1 | Maximum s \ x:0 1 | Maximum

0 | 0 9999 0 0 | 0 9999 0

1 | 0 9999 0 1 | 3 9999 3

2 | 0 2| 2 2 | 3 4] 4

3 | 0 2| 2 3 | 5 7| 7

4 | 0 2| 2 4 | 6 7| 7
---Stage 2--- ---Stage 5---

s \ x:0 1 | Maxi num s \ x:0 1 | Maxinmum

0 | 0 9999 0 0 | 0 9999 0

1 | 0 3| 3 1 | 3 9999 3

2 | 2 3| 3 2 | 4 4] 4

3 | 2 5| 5 3 | 7 7| 7

4 | 2 5] 5 4 | 7 8| 8
---Stage 3--- ---Stage 6---

s \ x:0 1 | Maximum s \ x:0 1 | Maximum

0 | 0 9999 0 0 | 0 9999 0

1 | 3 9999 3 1 | 3 9999 3

2 | 3 9999 3 2 | 4 9999 4

3 | 5 3| 5 3 | 7 5] 7

4 | 5 6| 6 4 | 8 8| 8
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*** Optimal value is
*** There are 2 opti nal

Optimal Solution No. 1

stage state decision

6 4 Omnt

5 4 | ncl ude
4 2 | ncl ude
3 0 Omt

2 0 Omt

1 0 Omt

0 0

8 * k% %

sol utions ***

Optimal Sol ution No. 2
stage state decision
6 4 | ncl ude
5 2 Om t
4 2 Om t
3 0 Om t
2 0 I ncl ude
1 0 Om t
0 0

Both of these solutions use exactly 4 units of volume, and are

therefore feasible. In this case, the complementary slackness

condition is again satisfied (0x0=0) and it therefore follows that

both must be optimal in the original problem!
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Important!
In the example shown,
» at most one adjustment was required for the Lagrangian
multiplier, and
* no duality gap was encountered,
whereas in general
* many such adjustments are required, and
* the optimal solution of the 2-dimensional problem might

never be found!

Multidimensional Knapsack page 32 D.Bricker, U. of lowa, 2001



SurnoyateRelaxation

Reducing Dimensionality by Surrogate Relaxation

Choose nonnegative multipliers [; and [y, so that

Zalj ;<b Zlulalj ;S Hb,
] nj_l — nj_l — Z(/'Ilalj +1uza2j)xj = (,Ulbl +/'/2b2)
D.ayx;Sby, | D hay X < b,
(/=1 (/=1
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In general, for an m-dimensional knapsack problem, the
surrogate relaxation is

S(,u) = Maximum Zn:vjxj

j=

subject to Zm:i,uiaijxj < Zm:,ul.bi,
i=l

i=l j=1

x, UX,, F L..n
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» As was the case with Lagrangian relaxation, for any m=0 the
optimal solution of the relaxation (a one-dimensional knapsack
problem) may not be feasible in the two-dimensional problem,
but the optimal value is an upper bound on the optimum of the

two-dimensional problem.

» The Surrogate Dual problem is the problem of finding the

surrogate multipliers 4 which will yield the least upper bound.
» Theory is available that guarantees that the surrogate duality

gap is no larger than, and is often smaller than, the Lagrangian

duality gap.
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