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stmt. of the QF problem
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In path-following methods for convex quadratic
programming, one must solve systems of
equations of the form:

-

Ax-y=bh
) —QK+ATw+s:c
Xbe = e
L WYe =e

This system consists of both linear and
nonlinear equations, and are frequently
solved using Newton s method.



Monomial/Pathfollowing 8/19/00 page 4

The motivation for our current work was a
presentation by Scott Burns (U, of linois)
on the "Monomial Method” for solving certain
syvstemns of nonlinear equations,

Burns, Scott A, (1923). The Monomial Method and Asymptotic
Properties of Algebraic Systems. University of [1inois.

(1993). The Monomial Method: Extensions, Yariations,
and FPerformance |ssues. University of [Thinois.

and A. Locascio (1991 ). "A Monomial-Based Method for
Solving Systems of Mon-Linear Algebraic Equations.” Int'T.J |
for Mumerical Methods in Engineering 31: 1295-1314,
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Arithmetic-Geometric Mean Inequality
Condensation of Posvnomials
Posvnomial Approximation of Signomials

The "Monomial Method " for Solving Svstems
of Nonlinear Eguations

A "toy” LCP Example
Application to Path-Following Algorithm

Computational Experience
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The Arithmetic-Geometric Mean Inequality

Simplest case: Given two positive numbers a&hb,

their arithmetic mean 5 a + b

is greater than or equal to their
geometric mean v ab

i.e.,

1 1
a+ls b a’#ﬁh’fé

with equality if & onlv if a=">b
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Arithmetic-Geometric Mean Inequality

For example, let a=2 & b=5 Then this inequality is

5 = ¥x2+kx8:v2x8 = 4

b -~

R '
Mrrdt el rnss ravarrralrde Blag sy
[f a=4 & bh=9,
6.5 = }5::{4 +}§x9 ¥ ‘-,:’("-'1-3{9 = B
L o -~ L - -~

ARl s {rrairde fdasn

page 7
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Arithmetic-Geometric Mean Inequality

Let o & [ bereal numbers
and a = @ : 0

b= [f2 0
Then (ﬂ:_mz

c-:z—Ec-:E+|322EI
— ccz+[322 2of3
::- HEE+EBEEE‘:’B :} }Ea+}£h2#ah

page 8
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The Arithmetic-Geometric Mean Inequality

The General Case: Let x,,x,,..x,>0

and 3§,,8,,...8, >0 and >3 =1

i=1
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The Arithmetic-Geometric Mean Inequality

[f we let =2, and Ei = }5 then we oblain the earlier
inequality,
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The Arithmetic-Geometric Mean Inequality

writing v = 8x; , we get

Eoiiileagient
Foi.

where  8;.8;,... 8, »0 and 28§ =1

i=1

with equality if & only iful/al =Y2fg,= = un/aﬂ
&
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Condensation of Posynomials

where ¢; >0  and ajj are real numbers.
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Recall the A-G Mean Inequality:

Letting wi=c [] %, we obtain

c 1] :ﬁ?ij 5; 5
wo- s e [T e
i ] 1 Ei i

where Ci(8) = 1‘[ (GVEJ&, o i(d) = Z ai;0i
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That is, we obtain a monomial approximation
(lower bound) of the posynomial,

i

gix)= > o] x?ij = C(ﬁ) H E;_:”"*ijfa}
J' j

where C(8) = I (’JVEJEH o j(0) = 2. 2ifi

which is exact when
als Az A
c H:{jh ¢z [ 1%} cn] [x;™
] _ ] _ _ ]
81 82 811

&
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: : : coefficients
Signomial Functions rot rastrictad
: 7r S
n ¥ m a
g(X1, X2, X)) =2 i I1 x.™9
i=1 =1 1

Condensation has long been used in solving
Signomial GP problems (which are essentially
nonconvex ) by means of a sequence of
approximating Posynormial GP problems
(which are essentially convex problems).

&
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Minimize x
subject to
(x,—2F + (xz—4)°

(x1 - 3) + (xz—3)

page 16

K im ondsioe g oireie
certered St (5 L5 wrth
FEE o

Kim Wi onreie
certered st (55 with
FEE o
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- -

Minimize x,
subject to
(21— 2F + (xx—4) =

(x,-3) + (x;-3) <«
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focal |
opLimum |
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Reformulation as a GF problem

5 . ConRSirarnt
(}il—2:]+(}i2—4) =4 # 7
= (x/-4xp+ 4)+ (x5 - 8xp+ 16) = 4

2 2
= -x;+4x1-x%+8x1 = 106

The constraint becomes the signomial constraint
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Reformulation as a GF problem

5 " CONSramt
(X,-3) +(X,-3) <4 # 9

= [x{-6x1+9)+ (x5 - 63+ 9)< 4
= :-{12—6:':1+:':22+ 14 = bxs

The constraint becomes the signomial constraint

de.-1 -1 i
XX X, 7X -
= L2 24 E—Xllegl

b b 3
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Signomial Geometric Program |

Minimize X,
subject to
X x by 2 ¥ &
1 z 1 o <

+ -

7732 16 16 %!

2 -1 "
XX ¥ 7Y B
162 N 62+ 32 XX <1

}{l}ﬂ: }{g}ﬂ
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To condense the signomial constraint

XX XX
- - =
4 2 16 16

we first write it in the form

1

-4 =
7 T3 0.25X, + 0.5X, o1

Z - =1 = 7 Z
X X5 1 +0.0025 X, +0.0025 X,
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We next condense the denominator of

0.25X, + 0.5X,

> = < 1
1+ 0.0625 X, + 0.0625 X,

into a single term. Let's use the point X5 = (4,5)
at which the terms of the denominator are

1T + 1 + 15626 = 35350625
Then

1 1.5625
3. =8, = =0.2807 and &. =
1 2 3.5625 3

= 35625 - 080
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§, =98, =0.2807, &, = 0.4386

Ci(8) = =1 1

Coefficient;

0.2a807 0.2a807
C(8) = 1 0.0625 0.0625
0.2807 0.2807 0.4386

=0.398/

0.43586
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§, =98, =0.2807, &, = 0.4386

Exponents:

a, = 08, + 28, + 08, = 2(0.2807) = 0.5614
a, =08, + 08, + 28, = 2(0.4386) = 0.8772
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C(3) =0.3987
a, = 0.5614
a,= 0.8772

8/19/00 page 26

Condensed denominator 15

0 3087 XIiI.SEuH XS.E?TE

onoirralf
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Geometric Inequality implies

0.5614 _,0.8772

1+0.0625X; +0.0625 X = 0.3987 X, X

and so

0.25X, + 0.5X, 0.25X, + 0.5X,
=

1+0.0625 X;+0.0625 X,  0.3987 X ™M 0577
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DOSVROAEaf .
: = ROSVRonrral
IORIiar
0.25X,+ 053X,
ﬂ398? K?EEH KS.E?'?E
0.25 1-0.5614 _,-0.8772 0.5 -0.5614 __1-0.8772
= X + X X
0.3987 ! < 0.3987 ! Z
0.4386 -0.8772 -0.5614 0.12258

—0.627 X, X, U +1.254 X, X,

which 15 a posynornial !
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If we constrain this posynomial so as to be < 1,
then by the geometric inequality, the original
signomial should also be < 1,

That 15, any X feasible in the posynormal constraint
derived by condensation will also be feasible in the

signomial constraint:
0.25X, + 0.5%,

1 +0.0625 X; + 0.0625 X_

< 0627 }ililﬂEEEu K-EEI.E'??E + 1954 }{-IEI.SEH KS.IEEE < 1
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The second signomial constraint may be condensed
ina similar fashion:

XX, X, 7X,

e SX,X, =1
X% %, 7X)
-1
p— 162+ 62+ 32 =1+ XX,

XX VX, 7%,
— 6 6 ~ 3 <1
1+ }{1}{2
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Kf}{; N Xz+ 7’}{; At (4.5), the denominator

6 b 3 <1 is 1+08=108,s0
-1
1+ XX, 1 0.8
8, =—=0.555,8,=—""=0.444
17 1.8 27 1.8

can be condensed (using 8, = 0.555, 8, =0.444 )
into the posynomial constraint

1.555, . -0.555 -0.444, . 1.444 -0.444, _-0.555

0.08385X, X,  +0.08385X, X, +1.174X%, "X, T =x1
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The signomial GP problem 1s therefore
approximated by the posynomial problem:

Minimize X,
subject to

0.627 X?.dSEE K-ED.E?'?E 41954 X-IEI.SEH Kg.lEEE < 1

0.08385X," X, +0.08385%, X, " 1.174x 7K < 1
X,>0,X,>0

&
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. |z Wewish tofind a fpasitive/
solution of the following
Method svystem of nonlinear

(signomial) equations:

gk(}:) = Z Gikcikn lr,,:]filijk — [}J k:]_! ey
I ]

where oy e {+1,-1}, ¢ > 0

&
Fxample. 2.5x77 + 15:.:19(3:@2 ~30x5 =0
77 +9x3 - 28x1x2 - 4x7° = 0

&
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Define the index sets of the positive & negative
terms of each equation:

TE=(i|ox>0) & Te=[i|og <0]

Then separate each signomial into positive &
negative parts:
gr(x) = Pg(x) - Qg(x)
where
Pe(x)= 3 o] x™ & Quix)= 3 ex]] x*

= 1 1= Ty ]
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gk{l-"i:l = Pk(l’i} - Qk(}{} =0

= Pr(x) = Q(x)
= Pelx) _ 4
Qu(x)

Each of the posynomials P,(x) and Q,(x) are
then condensed into monomial approximations

ﬁk(x] and Q,(x), respectively, and the ratio

of the two monomials i1s also a monomiall
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Each nonlinear equation is then approximated
by a monomial equation

Prix) . l:_jk(x} _ CE(S)H:{%L{EB:‘: 1
Quix)  Quix) i

for some choice of the weights ()

By taking the logarithms of both sides and making
the change of variable zj=In x;

we get the linear equation

2 a(®) 7=~ Cd) |

]
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[l Select an initial starting point x°.
Evaluate the weights of all the terms:
eix JT (x°)™ eix JT ()™

1 . + ] ) i}
dip = v ieTy & & = wie Ty

P(x°) Qxl(x®)
Evaluate C.(8) and oi;(8)
Solve the linear svystem of equations in z.
Exponentiate z to obtain x' (vielding x' >01)

Test for convergence, e.g.,

EIEEE

[x°- x|l = ¢
If the test fails, replace x* with X' and return
to step 1.
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It can be shown that the
"Monomial " Method is equivalent to
Newton's Method applied to

1nlpk‘:‘*‘x}]:n, k-1..N |
Qrle®)
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Standard | ] _
Newlton | P(x)-Qx)=0

Newlon-Central | P(e?) - Qie?)= 0 | | Nese all have
the property
P(e?) that they will
=1
Qie?) - exactly follow

the central
P{ez}]_ 5 path and yield

Mlonamial | In [Q{ez} strictly positive

1terates!

&
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A “Eapr LOF

Example

y =Mx + ¢, xy=0

Xy = |L
y=xX+1

i.e., one "complementarity’ equation
one linear equation

&
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el xy=p=075

e B e S S y=X+ 1

° in gqenoral, the

g sofution is

. .
i 1 1

3 . X(R)=-=4+ 4{ =+

) | () 5 L
i 1 1

1 : ==+ — +
| ¥iR) 5 4T

| | | | | |
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Monomial | Note that the "complementarity’
Method | equation is already in monomial

* form.

The linear equation is approximated by a

monomial as follows:  p_o _ x11)-y=0

—, E: x+1 -1
) b
bz e
x+1 =z (i)al 17 51513252}:51
o1/ \8z
x” 1
whore he weights are: 01= , Oo=
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The nonlinear Xy = |L

system:
y=xX+1

is approximated Inx+Ilny=In |

by the linear

system: dilnx -Iny= &iln 81 + 81ln 3
Z-- + Zo = 1N

that is, x T zy =

A2y - Zy = diln &1 + &(ln &

Whers zz=Inx, zy=Iny
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In the IMDLUDLOEIRMIAGDIE, then, we solve
i AT5H
K%:%l -1 L% «
and update x° < exp(zy) & ¥° < expizy)

while in BRIRAOLHERNEALODDLE. we solve
y° X% ||Ag| | B-x%y°
1 _1 .ﬁ};r

and update x° <« x°+A; & ¥° < y9+ Ay

yvo-x9-1
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Still another algorithm may be obtained by
applving Newton's Method after making the
logarithmic transformation:

Zy + Zy =10 L

eZ - ey = — |
which requires solving
1 1 dz, | B xy¥ ]
Ln x“-ln ¥° || dz vo-x9-1
and updating 2% ¢ z5+dz & 2§ — i+ dz

Newlifon—Ceniral
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=107

stannimng

criferion p-xy| + |}"3'1| = 10

Stariimg point- (700 767

&

page 46

0(1E2 1E1 “1E3 “9.1E1
1(8.181832E0 @.158182E0 ~7.5124E1 “1.77636E715
2|3.85531E0 4.85531E0 1.87187E1 8.88173E716
3|1.70635E0 2.70635E0 “4.618E0 4.440539E716
4|6.59832E71 1.65983E0 1. 09521E0 OEQ
5(1.876%E71 1.18769ED T2L.22918E71 2.22045E716
6|2.5613E72 1.02561E0 T2L.BE2R9ETE OEQ
7|6.24066E74 1.00062E0 Th.24445E74 OEQ

8 |3.9896E77 1E0Q T3.88961E77 OEQ
911.00002E7S 1E0Q “1.5129E713 OEQ
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n=10"°

Method / _ :
stoppirng ) et = -
CFiieriomn ||"' Kﬂ + |F X 1| = 10
Starting point. (700 187
k <k yk 1-xkyk ykxk-1
0 |1E2 1E1 “1E3 “9,1E1
1|9.28919E7R 1.07a52E74 1.8198E°23 -Q,99035E71
2 11.000706E7S Q. 9a245E"1 B8.27181E°24 ~7.55408E74
3 |1E~8 1EQ 1.98523E°23 ~2.88858E715
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An Infeasible Path-Following Algorithm

using the Newton-Central Method

Fgualions to be - Ax-y=b
approximalely Qx4+ Alw+s=c
salved gt each NSe = pe
iteralion L WYe = e

The logarithmic transformation is made, so that the
complementarity equations are linearized, and the
linear equations become nonlinear: Pie?) - Q{41 =0

&
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An Infeasible Path-Following

Algorithm using the Monomial Method

-

Fgualions to be Ax-y=b
approximalely Qx4+ Alw+s=c
salved gt each NSe = pe
iteralion L WYe = e

The linear equations are approximated by monomial
equations, and the logarithmic transformation s
then made to linearize all the constraints,
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Start with any interior solution (x°,v¥°,s%w%)=0
set k=0, and choose 3 tolerances 1, €5, €30

bk, ko k
Compute pf=o x Enil};lw , for O<o <l
t§:b+}rk—ﬂxk,& tE:ka+c—Aka—sk
If Jl &l
K el 2 d
S Y PRl P R

then stop & accept the current iterate as

optimal.
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Evaluate the weights

Compute coefficients & rhs of linear system

Solve linear svstem & return to step 1.

Properires of he segquence generaled by
Lhis algorrihm.
® exaclly on the ceniral trajeciory
® slrict/y positive
® comverges i bovnded and Lhe algorilim
does nol raif
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Computational

Experience




Monomial/Pathfollowing 8/19/00

page 53

* Random subproblems with two variables, three
constraints, and known solutions were randomly
senerated and vsed to build larger problems

» Separability was eliminated by performing
a linear transformation.

e« For each problem size, ten random test
problems were tested.

* [nitial solutions for Newton & Newton-Central
algorithm are randomly generated but ON the
central trajectory

e« Initial solutions for Monomial algorithm are
randomly generated but not on central
trajectory
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Separable

Nonseparable

Number of Problems Problems

Subproblems | A aQ A Q
M=2 S0% 25% J0% 100%
M=4 25% 125% 60% 100%
M=8 125% 6. 25% 55% 100%
M=12 8. 33% 417% 53.33% 100%

¥ variables M 3M

¥ constraints M 5M
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Adjustment of |
factor of |

k+1
Standard Newton min (0.95, 1.30%) if F— <1
. . E+1_ 1
] —
Algorithm: max (0.2, 0.70%) otherwise
Newton-Central ) erroft]
: min {0.95, 1.30%) if ——— <« 1
& Mnn_nmial. el _ ( ) error
Algorithms: max (0.2, 0.76%) otherwise
¢ k
P tq

& =
N TRl 1 [oxfee+ 1
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Separable |
Problems |

Iterations vs ¥ subproblems

B ewton
B Newton(Central)
B3 Monornial
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Separable |
CPU vs # subproblems Problems |

B Hewton
B MewtoniCentral)
Bl Monomial
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Nonseparable |
Problems

Ilterations vs. ¥ subproblems

B newton
B2 Mewton(Central)
B Monomial
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Nonseparable |
Problems

EPU 'fs # Subpr"ﬂb] emﬁ

TO
G0 3
50 -
40 ] B Newton

E 30 7 r- — ™

Doz2od 38 FE B MNewton(Central)
10 ' 02 = Bd Monomial

g 7 Eeratrms
M= M=4 M=8 M=12



