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In the transportation model, it 1§ assumed
that no route from one source to a destination
can pass through other sources or destinations
as intermediate points.

- The network is

‘bi-partite”, 1.e.,
the nodes may be
partitioned into 2
sets, with no arc
between 2 nodes of
the same set.

Sources

SUOTIeUT)S2(]
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"The Transshipment Problem”

We now consider the problem in which
‘transshipments” through other nodes
is allowed.

5 -f-'.ﬂ.-".-"L“EE -

LA FELI J G T

@D ] L ] Er’IEk Er G -. ................. T i::.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:E;E

page 3
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‘ Conservation of Flow I

(Material Balance, Kirchoff Equations)

Z}{jj B Z}{H:bj
i k

Met flow
frorm
node 1

Total flow |
out of node i |

Total flow ©

into node i |

@D L.Bricker, ). of lowa, 1938
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‘ Conservation of Flow I

Example: (@)
i Azt Rz — A4y = Dy
) A2 + Koz + Kog— X3z = by
- A3z~ Aoz + K32+ Aza = bz
'\ — A24 - Azq T Aaq =Dy

@D L.Bricker, ). of lowa, 1938
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Coefficient Matrix of Kirchoff Eqns

-

Kzt X3 — K1 =Dy
) A2 + Koz + Koa— X3z =Dy
- A1z~ Aoz + Xzp + Aza = bz
'\ — K24 —HXzq4 + K41 =Dy
is Lz (LE (23 (24 (52 (3.4) (41)

+1 +1 —1

-1 +1 +1 -1
-1 =1 +1 +1

- =1 -1 +1

@D L.Bricker, ). of lowa, 1938
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)

| "

(1,23 01,3y (2,3 (2,4 (3,2) (3,40 (4,1

~ode-Arc
Incidence
MMatrix

Coefficient matrix
of Kirchoff Eqns

rows  ~nodes | *1 + -1
columns =z arcs 1 +1 +1 -1
elements are 1 - +1 4+
+1, 0, 0r -1

. -1 -1 +1

@D L.Bricker, ). of lowa, 1938
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Incidence

sNode-Arc

MMatrix

column for arc (i,j)

has:
+ 7100 row |
-l inrow |
0 elsewhere

@D L.Bricker, ). of lowa, 1938

8/20/00 page

)

| "

1,2y (1,30 (2,3 f2,dy  (3,2) (3,40 (4,1
[+ +] -1 ]
-1 +1 +1 -1
-1 -1 +1  +1
i ~ -1 +1
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~ode-Arc
Incidence
MMatrix

Does not have full row rank

(Serr oF oS 15 3 (1,2) (1,30 (2,3
SOl oF Feroes, B
HEIRA I SRS
enssderee of —1
Eins rowsid

Rank 15 . o
(# rows) - 1 : — 1 -1 +1

i2,dy (3.2 (3,4 (4.1)
+1  +1 -1

@D L.Bricker, ). of lowa, 1938



~ode-Arc
Incidence
MMatrix

Exercise:

Draw the network
wilh each node-arc
ncidence matrix

@D L.Bricker, ). of lowa, 1938
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~ode-Arc
Incidence
MMatrix

Exercise:

Wwirite the node-arc
incidence matrix for
Lhe network

@D L.Bricker, ). of lowa, 1938
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‘ Unimodularity I

A square integer matrix is called umimoduiar
ifits determinant is + 1.

— the inverse of a unimodular matrix has only
integer—-valued elements

— 1f B is unimodular and b 15 integer—valued,
then the solution =%=B"b of the equation Bx=h
15 integer—valued.

@D L.Bricker, ). of lowa, 1938



ALTERNATE METHOD FOR COMPUTING MATRIX INVERSE

The MINOR M ;of an element (i,j) of an nxn nxn matrix is defined

to be the determinant of the (n—1)x(n —1) matrix which remains

when row i and column j are deleted.

The COFACTOR Fj of element (i,j) is defined to be (-1)™'M,

Example:
1 4 -1]
A=3 2 1],
2 1 2




MATRIX INVERSE

A—l — 1 FT
det 4

That is, the elements &ij of the inverse A" of a square matrix A

may be calculated by:
F.

A — Ji
a. —

7 detA




1 4 -1
A=[3 2 1 |.detd=-28
2 1 2
(-5 4 7 | 5 4 7 ]
M=9 4 -7 |=F=|-9 4 7
2 4 -14 2 4 -4
] _ |5 9 _1
1—5 -9 2 48 AS %
_1:_— - — 1 —1 1
A=A 4 vy
7 7 -14| | 1/ _1 |
- O

U

[ 0.17857 0.32143

0.14286

- 0.25

- 0.14286
- 0.25

70.071429 |
0.14286
0.5

ExaIﬂPIe



» This is generally not a computationally efficient method,
compared to Gauss-Jordan elimination.

= Suppose that A is a unimodular matrix with integer elements,
so that

detA0¢ 1= 13
1
det 4

then Fjjis an integer = 4™ = F" has only integer elements.

» This further implies that if, in addition, b is a vector with
integer elements, then the solution x =A™b of the equation Ax=b
has integer elements!

» If Ais mxn and totally unimodular (e.g. a node-arc incidence
matrix), then every basis matrix of A is unimodular and if b is
integer, every basic solution of the equations Ax=b is integer-
valued!
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‘ Total Unimodularity I

Aninteger matrix A 15 fofally vrimoguliar f
every square, nonsingular submatriz of A 15
Lrimoauiar.

— 1f b 15 integer-valued, every basic solution
of the systermn Ax=b 15 integer-valued.

@D L.Bricker, ). of lowa, 1938
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Theorem

Every node—arc incidence matrix 1s totally
unimodular,

— Ewvery LP whose coefficient matrix i1s a
node—-arc incidence matrix and whose BHS 15

integer—-valued will have only integer-valued
basic solutions,

@D L.Bricker, ). of lowa, 1938
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‘ Examples I

I Fock-Eottom Discount Stores

I'= Spitzen-Follish Company
I Caterer’s Froblem

I Cpencast Mining

= Stochastic Transportation Froblem

Ka

@D L.Bricker, ). of lowa, 1938
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Example: Rock-Bottom Discount Store:

The company has 8 stores, and 15 preparing for a
promotion of a certain apphiance. Some stores have
an excess of the product, and others a need for
additional units. Given transportation costs for all
routes joining the stores, how should the product
be re-distributed at minirmum cost?

@D L.Bricker, ). of lowa, 1938
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EXTess |
supoli |

@D L.Bricker, ). of lowa, 1938
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Fock-Eottom

Ciscount Stores

Linear Frogramming [ableay
(1,2y (2,3) (2,50 (4,3 (4,5 (54} (47} (56} (6,7} (7,8

MIN| 1 7 3 1 3 2 4 5 3 1

1] 1 =110
2y | -1 1 1 =| [
3) -1 -1 =|-3
4} 1 1 -1 1 = 2
5 -1 -1 i i =l 0
B -1 1 =[-1
7 -1 -1 1 =l O
al -1 |=|-&

@D L.Bricker, ). of lowa, 1938
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N = set of nodes of the network

A =set of arcs of the network

X = flow inarc (i,j)

Cij = unit cost of flow in arc (i,j)

Lij = lower bound of flow in arc (i,])
Uiy = upper bound of flow in arc (i,j)

Minimize z ij}{”‘

— . T (i,j1=-4
Minimum-cost | 3
Network Flow | 2 Xig = & K= 0 v ken
Froblem Lij = }{1]' = Ujj bl I:],Jj = A

@D L.Bricker, ). of lowa, 1938
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Minimize Z ij}{jj

S.t. I:]_.]:IE:H.
Z }{HJ_Z }{”{:C' v kenN
]

1

|—1j = }{1] = Ujj v (],Jj = |

ASSUMES:
# no losses or gains in the arcs

® flow 15 a "circulation” in the network... no
accumulation of commodity at a node
Other formulations may have RHS of Kirchoff Egns
which are nonzero,

@D L.Bricker, ). of lowa, 1938
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(L) | Fock-[Eottom
bownds | : Discount Stores
on tiaw |

ST ST
(12,12)

Circulation Model

of Network Flow
@D L. Bricker, L. nflu'-.u-'a 19935
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Example: Crew Scheduling

The Spitzen-Pollish Co. 15 a contract maintenance firm that
provides and supervises semi-skilled manpower for major
overhauls of chemical processing equipment.

A standard Job frequently requires a thousand or more men,
and may extend from one or two weeks to several months.

Since the client’'s plant oftenis located in another city,
Spitzen-Follish must transport the workers to the plant and
provide on-site housing and meals, etc, in addition to wages,

&)

@D L.Bricker, ). of lowa, 1938
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For a routine job, Spitzen-Pollish can estimate fairly
accurately the number of crews required on a day-to-day
basis for the job's duration.

The firm may vary the number of crews on-site during the job...
Howewer, there are some costs that do not depend upon how
long a crew remains on-site (costs of recruiting, transportation,
training, etc.)

The company may therefore find it more economical to retain
1dle crews on-site 1f they will be required a few days later

@D L.Bricker, ). of lowa, 1938
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Spitzen-Follish Co., LIF Formulation

Define: Xj = # of crews beginning work on-site
at beginning of period 1 and returning
at end of period (j-1), i.e., beginning
of period J.

Cij = Total operating cost of such a crew,
(Assume Cyj€ Cpy if hei<jek)

R = # of crews required during period k
n = length of job (¥ periods) + 1
FE, JOL Ends S BEQInainG oF period 7

@D L.Bricker, ). of lowa, 1938
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f— 1 n
Minimize 2 2 CijXij

j=1 j=i+1

subject to
Z }{11' :R1
j=2
k I
Z Z }iijRk
i=1 j:k’+1

n-1
_21 Ain = Ripo
i=

}<1j = {'::',1,2,3,....

@D L.Bricker, ). of lowa, 1938
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Spitzen—-Follish

LIPF MModel

for k=234, . n-2

I forallij
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LP Tableau (for n=6) SIS
WFTFO ES

e e s e i e e e i i e e — = ™

SoCic dudduwn 338 92 55 Sa rhs
mn| CCCCC|CCCC|CCC|CC|C| 0O O 0 Fqsa:
1] LI T = Q1
2] [ Y O I O A A -1 =| R,
3] 111 | I O O -1 = RE
4) |1 I IRERE 1= R,
5) 1 1 NERE = Re

Moder swbsoriplis of O Nol # node-arc

were orrited for ncidence mairix/

T SRRSO

@D L.Bricker, ). of lowa, 1938
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mn CCCCC|CCCC|CCC|CCIC] O O O
DRI

2) RN IR I -1

3) RN R N R -1
4) I IR IR -1
5) 1 1 HERER

Make the following transtormation:

subtract row 1 from row 2 toobtainrow 2°

2 "3 3
-
4 © 5w g

@D L.Bricker, ). of lowa, 1938
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The equations obtained in this way are implied by
the original set of equations,

Many of the "1"s are eliminated by this
transformation, and some "=1"s are introduced;

subtract row 1 from row 2 toobtainrow 2°

ol 111 =| K,
2) [N O I O O O -1 =1 R,
27 -1 111 -1 = | R—K;

@D L.Bricker, ). of lowa, 1938
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min[ CCCCC[CCCCICCCICC[C0 0 o
(T O I IO B =| R,

2'7 | -1 1111 -1 =| Rs-R,
3" -1 -1 111 -1 =| Rz-R,
4" -1 -1 -1 11 I -11=] R4-Rs
5" -1 -1 -1 -1 |1 1= Hs-Rg4

The resulting tableau, equivalent to the original, has
a constraint coefficient matrix very nearly that of 4
node-arc incidence matrizx  (ie., +1 and -1 in all but
o columns, which have a +1 but no -1)!

@D L.Bricker, ). of lowa, 1938
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VA Wh =

CCCCCl|cccc|coco|ce|c|l o O O papaamn

1111 =| R,
-1 1111 -1 =| R,-R,
-1 -1 11 [ -1 =| Rz-R,
-1 -1 -1 11 1 -1 ]=| R4-R5
-1 -1 “1 -1 1 |=] Re-Ra

sum all of the constraints, and negate both sides of
the resulting equation... If a column already has &

+1,-1 pair, the sum is zero. Otherwise, we obtain
the needed -1

6')

@D L.Bricker, ). of lowa, 1938
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-1

-1

-1

~Rs




mn| CCCCC|CCCC|CCC|CC|C| O O O @Epaaas
[ R IR B =| R,

2'0 -1 11 -1 =| Rs-R,
3 -1 -1 111 I -1 =| Rs-R,
4" 1 -1 -1 11 1 =117 Ra-Rs
5 -1 -1 -1 -1 ] 1 |= RE_Rq
6") -1 -1 -1 -1~ =] -Kg

Wwe now have an equivalent formulation of the

Spitzen—Pollish problem which 1s a network problem!

gl s 1he ghnegrance of ne nelwari v

@D L.Bricker, ). of lowa, 1938



Min-Cost Net Flow 8/20/00 page 32

Fhe nefvoris will fave ane pode per row o (e
FRTE T TICHTERCE 1LY

e

2) (3) | (5 5)-Rs
R1 (‘%82 83 /7# 84 /I &

7 nasiiilee,
s Wi e
8,=R4R; | & SN | EE
8:=RgRy | nuode, &

F demandg

Define: 8,=R.-R,
83 =R3_RE

@D L.Bricker, ). of lowa, 1938
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Because this 1s a network problem with integer
right-hand-side, any basic LP solution (in
particular, the optimal LP solution) will be
integer-valued.

@D L.Bricker, ). of lowa, 1938
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Example: Caterer’s Problem

A catering service must provide napkins for
dinners on each of T consecutive days.
The number required on day t 15 Dy.
Requirements may be met by

® purchasing new napkins, at cost €, each

® |aundering napkins soiled at an earlier dinner,
Two types of laundry service are available:

¢ regular: costs Csz each, 1 days reguired

® special: costs Cp each, v days reguired
Mo salvage value for Moater Cza< Co< Col
napkins after day T. <3 vt

@D L. Bricker, ). of lowsa, 1222



Sample [Cata (Caterer’s Froblem

4 days
2 days (one-day serwvice)
1 day (overnight service)

$2.00 for new napkins
C = $1.40 for overnight laundry service
C = $0.90 for regular laundry service

Day t. Wed Thurs Fri  Sat
Rgmt: 400 600 970 800
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Cecision ¥Yariables:

P; = # napkins purchased on day t

R:i = # napkins sent to regular laundry on dav t
S5S: = ¥ napkins sent to special laundry on day t
Ui = # soiled napkins stored at end of dav t

Vi = ¥ clean napkins stored at end of dav t

@D L.Bricker, ). of lowa, 1938
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Lenasidian af CI8sn REnK NG 8elore qinnee)
Ryz+S¢ o+ Vg +Pp = Dy +

“ k . S
E avallable foruse onday t  tobe stored
o used  clean
-
7
= ENsnasition of S5oiied REniins Sriee qinner.
5 Ry +5¢ +Up = Dy + Uy
— R
sent to stored solled napking
laundry dirty

@D L.Bricker, ). of lowa, 1938
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Constraint Matrix:
pII R1 S1 U1 H’ﬂ I:IE RE SE UE vE

R, S, U,V P, U, rhs

page 38

450
B0

975
as0

4=0
G50

975
&0

Nd @ node—are incidence mraELriy.
maEniniiEied fo prodiice one 7

@D L.Bricker, ). of lowa, 1938
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Constraint Matrix:
Negaie poli Siaes ol Ihe Log poriion oF 1he mairiy,
rhs

I:Il RI 51 U1 I"w"'l1 I:lE RESEUEIVIE I:]E SEUEME I:ld U-ﬂ

page 39

450
650

975
&0

l

450
B0

975
as0

FAe PESUIL TS e RSN F ROGE —EC INCTTEnce

i
@D L.Bricker, ). of lowa, 1938
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Constraint Matrix:

Apnsad F aew row ODESTES Q1 egEling st oF olssr rows:

I:Il R1 51 U1 II.I'H1 I:]E RESEUEM‘E I:]E SSUEVE p-*—'l U-ﬂ

page 40

rhs

S B — O

]
-1

- 430
- 650

- 975
- &30

l

450
650

975
a0

= By

l

-1

0

@D L.Bricker, ). of lowa, 1938
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Caterer’'s Problem: Network odel

Ui Uz

+450 +650

@D L.Bricker, ). of lowa, 1938
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Note: the caterer's problem originated
in a military context:
Aldrplane engines must be serviced
after every mission (or replaced)
Engine service can be performed
overnight at higher cost, otherwise
is performed the next davy
The number of daily missions has been
planned far in advance

&

@D L.Bricker, ). of lowa, 1938
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Cpencast MMining Froblem

o A company has obtained permission to opencast
mine ("strip mine”) within a square plot 200
meters on each side.

 Angle of slip of so1l 15 such that sides of excavation
may not be steeper than 45"

« Company decides to consider the problem as one of
extracting rectangular blocks

@D L.Bricker, ). of lowa, 1938
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The blocks are ﬁ| | | | ||eu:§ _ %
selected Lo lie e | [Tevel 27

above one another BT | [level 5

' '.rrrzi l____L'EUEI 4

like 50 ittty

Restrictions imposed by the
angle of slip means that it
15 possible only to

excavale blocks forming

an “inverted pyramid”

@D L.Bricker, ). of lowa, 1938
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The company has estimates for

the walue of the ore in various

places at various depths. e ——

Using these estimates, each block -

has a certain net income —

= (revenue from sale of ore) - (cost of excavating,
extracting, & refining)

g ——

Which Blocks shotld
He excavalied?

@0 L.BACKEr, L. O 103, 149490
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A13[14]15]16 |

First, number the

2134
=l ; .
= (9101112 Define: A25]24]25]
13|14]15]16 1 if block i
~ [17[18[10] Y= 15 excavated PETIELS
— '
S [20[21]22 0 otherwise - a—
- (2524|125 = '
R. =net m;ame from ﬁm
" block 1 —
- [26]27
g i
= [28129] | Objective: Maximize 2 RjY;

30

LEVEL 4

@D L.Bricker, ). of lowa, 1938
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Block Numbers

2134
6|7 |8
10(11{12
15(14{15(16

LEDEL 1

1718|119
20(21 (22
2312425

LEVEL 2

26 (27
28(29

LEDEL 3

30

LEVEL 4

@D L.Bricker, ). of lowa, 1938

8/20/00

Example
Data

Excawvation Cost /Block

Lewvel Cost
1 3
2 £
3 &
4 10

Revenue

LEDEL 1

oo |

1| 0|3

1|3 -2

2

LEVEL 4

20

page 47
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Constraints

A13[14]15]16 |

" 6|7 |g| fxamnis
(=]
=
= |9 [10)11)12| Block 17 cannot A25 24125 |
13(14/1s16| be excavated unless F
blocks 1,2,2,&60
~ P8I are excavated: 28] 29]
= [20(21]22 =
= Vo< Yy, YL LY
= [23]z4]2s 17> 1 7= 2 50
e Yzl s, i< Ve :
= [26]27
= | | i .
w |28]29 if,»ﬁ*sf' wWiise, For 880 8iack i fevels

=0 O S S wee abiain S sgch consierainis,
30

LEVEL 4

@D L.Bricker, ). of lowa, 1938
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Size of Problem:

* of Variables: 30 integer (hinary) variables
# of Constraints: 4 x 14 =56 inequalities

[f the number of blocks and number of levels
were increased by using a smaller grid, the
number of binary variables and constraint
increases dramatically!

Solution as an (nleger programming problesm
Ggiick iy becomes exorbriantiyv expensive 1o
compite!

@D L.Bricker, ). of lowa, 1938
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Let's use g smaller version 1o study the strictire

al the profiemn: Yig <Y Yo LY
_ {V1aiﬁ g £ Vg

_ ; 2 {Vnin‘l”z Yy <Y

S Ts Yip < s g <Y

{“ﬁz CWq o Mg <Y

; 10(11 Yo Y2 Yo € Y5

= |12]13 {‘ﬂ; <Y Yiz < Ys

ko Yiz < Y¥g Yz (Yo

% 4 {Wdiﬁ‘fﬁm g £ M

- Yia < Wiz Mg <3

@D L.Bricker, ). of lowa, 1938
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i: 2 32 4 5 a6 7 g 9 10 11 12 17 14

' = - 1 1 : D
Constraint | T ! Ak
Matrix - 1 £ 0
e - 1 1 i [:I
-1 1 =10
-1 1 il
Py -1 1 il 0
apparent -1 | } ‘1
rafwork -1 i | o
strvcture! il ‘ £] 0
1 1 | 0
-1 1 | 0
.Y -1 1 ¢ | 0
) -1 1 ¢ | O
Consider my N
ihe dusf -1 i l:|n
of the LF LT I g

refgxastiiont -

@D L.Bricker, ). of lowa, 1938
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MIN

ooaoan

ooaoan

onoaoan

oooan

111111111111 11

page 52

W00 = T s W —
1

1111
11 T11 1

111 1

(e TR Ur N R LR I U LY LY DE N R P L L LY

Fiis is ALMOS T 7 node-arc
micrdence matrix?

@D L.Bricker, ). of lowa, 1938
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8/20/00

e will obiain g rode-arc incrdence matrix ¥ wo
® sphiract surpfus varisbies fo conver? Lo equatrons
e 770 & row = regative of sum of i consirainls

MIN

W00 =0 O e W [ —

anoaoan

onoaon

onoaon

ooaoan

aooan

T1T1111111111 11

page 53

-1

1111

T11 1

1111

—_
[ R N T LYo DR UE I CE N L L L LT P P L L

Sy of Faose fows widl He sennd
@D L.Bricker, ). of lowa, 1938
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For what network 1s this the node-arc incidence
matrix’

MIMN| OO OOOQOQO(OoOO0OCO0O(00O0O0(0OO0 00T TTT1T11 111111

LY i L R R B LN Rl
1
1
1
I
1
e J -
A
_\_J

10 111 1 -1 1
11 111 1 -1 1 Ry

L ]
A
o

-
it ]
—_
—_
—_
—_
1
—_
1
—_
—_
LN
A
—_
)

A
13 A1 A ] VER

These columns are negative
@D.L.Bricker, L), of lowa, 1995 of the preceding 14 columns
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For each block, there is a node, whose “supply ™ 15 Rj

(demand if
Ri{'ﬁ)

LEYEL 1

In addition,
there is a
"super’ node
#10
with “demand”

:ZRi

@D L.Bricker, ). of lowa, 1938
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There is an arc from each block to each of the 4
blocks above

LEYEL 1

@D L.Bricker, ). of lowa, 1938
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There is a pair of arcs between each block and # 15

LEYEL 1

Objective is
to minimize
flTowy 1nto
node # 15

@D L.Bricker, ). of lowa, 1938
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After solving the network problem, the
solution of the original problem is obtained
from the dual variables (simplex multipliers).

Because min-cost network flow problems are
very efficiently solved by the network simplex
method, while general-purpose branch-and-
bound algorithms are very time-consuming,
large versions of this problem can be solved
only as network problems!
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Analher rormulalion.

The fauer constraints

ll\lﬂ?i ll"lllll1, H‘Iﬂ?i III'I'IIlE
Vol Ye, Vo< Vs

may be replaced by the single constraint
AY 2 Y Yo+ Y5+

since Y,-=1 15 feasible in this constraint esfy 7
I'I'I"Il1 :l"'l'lllgzl"'l"%:l"'l"fa :1
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Using these alternate constraints, our sample
problem's formulation 1s reduced in size from

ob linear constraints to only 14

Howewver, whereas in the earlier formulation the
integer restrictions can be relaxed and the problem
solved as a min—-cost network flow problem,

the new formulation will require the use of an
integer programming algorithm such as branch-and-
bound.

fhe computalronal efford will be increased Ly
several orders of magnitude!

&
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