Facility Location Problem in a Network

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, lowa City, Iowa 52242

e-mail: dbricker@icaen.uiowa.edu

😰 Median Problem

minimizing the sum of weighted shortest path lengths

Center Problem

minimizing the maximum of (possibly) weighted shortest path lengths

The p-Median Problem

Given a network with nodes j=1,2,...n where w_j = "weight" of node j (e.g., volume of shipments)

Let d(X,j) = distance from node j to the nearest point in the set X Find $X = \{x_1, x_2, ..., x_p\}$ which $\tau(X) = \sum_{j=1}^n w_j d(X,j)$

4

The points in X are called p-medians.

©Dennis Bricker, U. of Iowa, 1997

At least one set of p-medians exist solely on the nodes of the network.

That is, we need search only among the nodes for the p-medians!

Where should a single facility be located to serve the eight cities?

Objective:
Minimize the sum of the distances to the cities weighted by their demands

 $\sum W_i d_{ij}$

🗐 Minimum

The optimal location for a single facility to serve the 8 cities is at city C

What if two facilities were to be used?

Consider all pairs of potential facility sites:

Examples:

— select minimum shipping cost in each column

$$47 = \sum_{i} \min_{i=A,B} \{W_{i}d_{ij}\}$$

$$39 = \sum_{i} \min_{i=D,E} \{W_{i}d_{ij}\}$$

$$\frac{32 6}{0 3} 25 = \sum_{j} \min_{i=A,G} \{W_{j}d_{ij}\}$$

There are $\binom{8}{2}$ = 28 such combinations to evaluate!

How might one find the 3-median set? Requires considering $\binom{8}{3}$ = 56 combinations!

$$\textbf{APL evaluation of } \sum_{j} \underset{i \in \boldsymbol{\mathcal{S}}}{minimum} \left\{ W_{j} d_{ij} \right\}$$

$$+/L/(D\times(\rho D)\rho W)[S;]$$

Math Programming Model of the p-Median Problem

Variables |

X_{ij} = fraction of demand of customer j supplied by facility at location i

$$Y_i = \begin{cases} 1 \text{ if a facility is located at site i} \\ 0 \text{ otherwise} \end{cases}$$

$\begin{array}{c} \textbf{Math Programming Model} \\ \textbf{of the p-Median Problem} \end{array} \quad \underset{i=1}{\overset{m}{\sum}} \; \sum_{j=1}^{n} \; W_{j} D_{ij} X_{ij} \\ \end{array}$

Min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} W_j D_{ij} X_{ij}$$

subject to
$$\sum_{i=1}^{m} X_{ij} = 1 \ \forall j=1,...n$$

$$X_{ij} \leq Y_i \ \forall i=1,...m; j=1,...n$$

$$\sum_{i=1}^{m} Y_i = p$$

$$X_{ij} \geq 0 \ \forall i=1,...m; j=1,...n$$

$$Y_i \in \{0,1\} \ \forall i=1,...m$$

Heuristic Algorithm for the p-Median Problem

1. Initialization:

Let k=1. Find the 1-median (the set $S=X_1$)

2. Facility Addition:

Evaluate the (n-k) combinations of S with a node r not in S, i.e., _

$$\sum_{j} \underset{i \in S \cup \{r\}}{\text{minimum}} \left\{ W_j d_{ij} \right\} \qquad \forall \ r \notin S$$

Add to S the node yielding the lowest objective function and set k=k+1.

3. Facility Substitution:

Evaluate each of the kx(n-k) sets obtained by substituting a node not in S for a node in S, i.e.

$$\sum_{j} \underset{i \in S \cup \{r\} \setminus \{s\}}{\text{minimum}} \left\{ W_j d_{ij} \right\} \quad \forall \ r \notin S \& s \in S$$

Replace S by the best set evaluated.

♣ If S contains p nodes, i.e., k=p, STOP.
Otherwise, return to step 2.

©Dennis Bricker, U. of Iowa, 1997

... beginning with 1-median set {C}

2-Median

Trial additions:

Add cost 31 38 34 37 30 20 29

Addition result: Locations 3 7

set

Cost: 20

Substitution Step

Cost	Locations		
25 31 32 38 18 34 43 37 38 30 47 29	1 7 3 1 2 7 3 2 4 7 3 7 5 7 3 6 7 8 8 7 3 8		

Substitution result: Locations 4 7 Cost: 18

add A to set

... begin with D & G in set

3-Median

Trial additions:

Add 1 2 3 5 6 8 cost 12 15 14 14 16 15

Addition result: Locations 4 7 1 Cost: 12

Substitution Step

Cost	Locations	
17 34 15 11 28 14 19 33 14 20 21 16 21 15	2 7 1 4 2 1 4 7 2 3 7 1 4 3 1 4 7 3 5 7 1 4 5 1 4 7 5 6 7 1 4 6 1 4 7 6 8 7 1 4 8 1 4 7 8	substit for D ii
~1 4 - 4	4	T

substitute C for D in the set

(3)(

Substitution result: Locations 3 7 1

Cost: 11

add D to the set

... begin with A, C, & G in set

4-Median

Trial additions:

Add cost 9 8 8 9 8

Addition result: Locations 3 7 1 4 Cost: 8

begin with A, C, D, & G (1,3,4,7)

Substitution Step

		€ & }	——(B)
Cost	Locations	9	×
9 26 12 9 8 25 11 8 10 18 12 9 17 11 8	2 7 1 4 3 2 1 4 3 7 1 2 5 7 1 4 3 7 1 4 3 7 1 5 6 7 1 4 3 7 1 8 7 1 4 3 7 1 8 3 7 1 8	$\begin{array}{c} 2 \\ (3) \bigcirc 0 \\ 1 \\ (4) \end{array}$ substitute E sor C in the set $\begin{array}{c} 3 \\ 3 \\ 4 \end{array}$	2 3 (2) (1) (2) (1) (1)
5UDST1T	ution result: Lo	cations 5 7 1 4	(1)

Substitution result: Locations 5 7 1 4

Cost: 8

Allocation of Customers to Warehouses (3)

©Dennis Bricker, U. of Iowa, 1997

1-Median of a Tree

For any set C of vertices, define $\mathbf{W}(\mathbf{C}) = \sum_{i \in C} \mathbf{w}_i$

Theorem Let [a,b] be any edge of a tree, and

let A = set of vertices reachable from a without passing through b

B = set of vertices reachable from b without passing through a.

Then W(A) \geq W(B) implies $\tau(a) \leq \tau(b)$

To find the 1-median of a tree:

- 0. Let $W = \sum w_i$. Select any vertex j.
- 1. If $\mathbf{w}_j \ge \frac{1}{2} W$, i $\in \mathbb{N}$ then stop; j is a 1-median.
- 2. If j has degree 1, let k be its neighbor, i.e., [k,j] will be an edge.

Replace w_k with w_k+w_1 , and delete vertex i from the tree.

Else find an elementary chain from vertex j to a vertex k with degree 1 (preferably using previously unused edges.)

Let j=k and return to step 1.

Example

Find the 1-median of the tree:

Let's choose to begin with vertex #7.

Total "demand" $W = \sum_{i=1}^{n} \mathbf{w}_i$ is 30.

 $w_7 < \frac{11}{2} = 15$. Select neighbor (vertex #6), and replace w_6 with $w_6 + w_7 = 3$. Delete vertex #7.

 $w_6 < \frac{W}{2} = 15$. Find a path 6->8 to a vertex (#8) with degree 1:

 $w_8 < \frac{1}{2} = 15$. Select neighbor (vertex #6), update w_6 , and delete vertex #8:

 $w_6 < \frac{1}{2} = 15$. Select neighbor (vertex #5), update w_5 , and delete vertex #6:

 $w_5 < \frac{1}{2} = 15$. Select chain $5 \rightarrow 9 \rightarrow 10 \rightarrow 12$ to vertex #12, which has degree 1.

 $w_{12} < \sqrt[84]{2} = 15$. Select neighbor (vertex #10), update w_{10} , and delete vertex #12

... after several more iterations, the tree is as shown, where vertex #9 is being considered.

 $w_9 < \frac{W}{2} = 15$, so we select its neighbor (vertex #5), update w_5 , and delete vertex #9.

 $w_5 > \frac{11}{2} = 15$, so we stop; Vertex #5 is the 1-median.

 $W(A) \ge W(B)$ implies $\tau(a) \le \tau(b)$

Edge (5,9): $W(9) = 14 < 16 = W(5) \text{ implies } \tau(9) > \tau(5)$

$W(A) \ge W(B)$ implies $\tau(a) \le \tau(b)$

Edge [5,4]: W(5) = 22 > 8 = W(4) implies $\tau(4) > \tau(5)$

