

Facility Location Problem in a Network

author

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

Median Problem

minimizing the sum of weighted
shortest path lengths

Center Problem

minimizing the maximum of (possibly)
weighted shortest path lengths

The p -Median Problem

Given a network with nodes $j=1, 2, \dots, n$
where w_j = "weight" of node j
(e.g., volume of shipments)

Let $d(X, j)$ = distance from node j to
the nearest point in the set X

Find $X = \{x_1, x_2, \dots, x_p\}$ which

$$\text{minimizes } \tau(X) = \sum_{j=1}^n w_j d(X, j)$$

*The points in X are
called p -medians.*

Hakimi's Theorem

At least one set of p -medians
exist solely on the nodes of
the network.

*That is, we need search only among the nodes
for the p -medians!*

Where should a single facility be located to serve the eight cities?

Objective:
Minimize the sum of the distances to the cities weighted by their demands

	TO							
	A	B	C	D	E	F	G	H
A	0	4	3	2	6	5	8	6
B	4	0	2	3	4	4	7	5
C	3	2	0	1	3	2	5	3
D	2	3	1	0	4	3	6	4
E	6	4	3	4	0	5	8	6
F	5	4	2	3	5	0	3	1
G	8	7	5	6	8	3	0	3
H	6	5	3	4	6	1	3	0

Find the matrix of shortest path lengths between nodes of the network (e.g., by Floyd's algorithm)

	TO							
	A	B	C	D	E	F	G	H
A	0	4	3	2	6	5	8	6
B	4	0	2	3	4	4	7	5
C	3	2	0	1	3	2	5	3
D	2	3	1	0	4	3	6	4
E	6	4	3	4	0	5	8	6
F	5	4	2	3	5	0	3	1
G	8	7	5	6	8	3	0	3
H	6	5	3	4	6	1	3	0

W_j 3 1 2 3 1 0 4 1

shortest paths

	TO							
	A	B	C	D	E	F	G	H
A	0	4	6	6	6	0	32	6
B	12	0	4	9	4	0	28	5
C	9	2	0	3	3	0	20	3
D	6	3	2	0	4	0	24	4
E	18	4	6	12	0	0	32	6
F	15	4	4	9	5	0	12	1
G	24	7	10	18	8	0	0	3
H	18	5	6	12	6	0	12	0

weighted shortest paths

$\sum_j W_j d_{ij}$

	TO							
	A	B	C	D	E	F	G	H
A	0	4	6	6	6	0	32	6
B	12	0	4	9	4	0	28	5
C	9	2	0	3	3	0	20	3
D	6	3	2	0	4	0	24	4
E	18	4	6	12	0	0	32	6
F	15	4	4	9	5	0	12	1
G	24	7	10	18	8	0	0	3
H	18	5	6	12	6	0	12	0

weighted shortest paths

What if two facilities were to be used?

$\sum_j w_j d_{ij}$

Minimum

The optimal location for a single facility to serve the 8 cities is at city C

Consider all pairs of potential facility sites:

Examples: select minimum shipping cost in each column

A	0	4	6	6	6	0	32	6
B	12	0	4	9	4	0	28	5

$$47 = \sum_j \min_{i=A,B} \{w_j d_{ij}\}$$

D	6	3	2	0	4	0	24	4
E	18	4	6	12	0	0	32	6

$$39 = \sum_j \min_{i=D,E} \{w_j d_{ij}\}$$

A	0	4	6	6	6	0	32	6
G	24	7	10	18	8	0	0	3

$$25 = \sum_j \min_{i=A,G} \{w_j d_{ij}\}$$

There are $\binom{8}{2} = 28$ such combinations to evaluate!

How might one find the 3-median set?

Requires considering $\binom{8}{3} = 56$ combinations!

A	0	4	6	6	6	0	32	6
B	12	0	4	9	4	0	28	5
C	9	2	0	3	3	0	20	3

$$29 = \sum_j \min_{i=A,B,C} \{w_j d_{ij}\}$$

A	0	4	6	6	6	0	32	6
B	12	0	4	9	4	0	28	5
D	6	3	2	0	4	0	24	4

$$34 = \sum_j \min_{i=A,B,D} \{w_j d_{ij}\}$$

etc.

APL evaluation of $\sum_j \min_{i \in S} \{w_j d_{ij}\}$

```
+ / L ≠ (D × (ρ D) ρ W) [S; ]
```

Math Programming Model of the p-Median Problem

Variables

X_{ij} = fraction of demand of customer j supplied
by facility at location i

$$Y_i = \begin{cases} 1 & \text{if a facility is located at site } i \\ 0 & \text{otherwise} \end{cases}$$

Math Programming Model of the p-Median Problem

$$\text{Min } \sum_{i=1}^m \sum_{j=1}^n w_j D_{ij} X_{ij}$$

subject to

$$\sum_{i=1}^m X_{ij} = 1 \quad \forall j=1, \dots, n$$

$$X_{ij} \leq Y_i \quad \forall i=1, \dots, m; j=1, \dots, n$$

$$\sum_{i=1}^m Y_i = p$$

$$X_{ij} \geq 0 \quad \forall i=1, \dots, m; j=1, \dots, n$$

$$Y_i \in \{0, 1\} \quad \forall i=1, \dots, m$$

Heuristic Algorithm for the p-Median Problem

1. Initialization:

Let $k=1$. Find the 1-median (the set $S=X_1$)

2. Facility Addition:

Evaluate the $(n-k)$ combinations of S with a node r not in S , i.e.,

$$\sum_j \min_{i \in S \cup \{r\}} \{w_j d_{ij}\} \quad \forall r \notin S$$

Add to S the node yielding the lowest objective function and set $k=k+1$.

3. Facility Substitution:

Evaluate each of the $k \times (n-k)$ sets obtained by substituting a node not in S for a node in S , i.e.

$$\sum_j \min_{i \in S \cup \{r\} \setminus \{s\}} \{w_j d_{ij}\} \quad \forall r \notin S \& s \in S$$

Replace S by the best set evaluated.

4. If S contains p nodes, i.e., $k=p$, STOP.
- Otherwise, return to step 2.

K-median
Facility Location
Problem

1-Median

Cost = 40

the one-median

... beginning with 1-median set {C}

2-Median

Trial additions:

Add	1	2	4	5	6	7	8
cost	31	38	34	37	30	20	29

Addition result: Locations 3 7
Cost: 20

Add facility at
node G to the
set

Substitution Step

Cost	Locations	
25	1	7
31	3	1
32	2	7
38	3	2
18	4	7
34	3	4
43	5	7
37	3	5
38	6	7
30	3	6
47	8	7
29	3	8

Substitution result: Locations 4 7
Cost: 18

substitute D for C in the set

... begin with D & G in set

3-Median

Trial additions:

Add	1	2	3	5	6	8
cost	12	15	14	14	16	15

Addition result: Locations 4 7 1
Cost: 12

add A
to set

Substitution Step

Cost	Locations
17	2 7 1
34	4 2 1
15	4 7 2
11	3 7 1
28	4 3 1
14	4 7 3
19	5 7 1
33	4 5 1
14	4 7 5
20	6 7 1
22	4 6 1
16	4 7 6
22	8 7 1
21	4 8 1
15	4 7 8

Substitution result: Locations 3 7 1

Cost: 11

substitute C
for D in the set

... begin with A, C, & G in set

4-Median

Trial additions:

Add	2	4	5	6	8
cost	9	8	8	9	8

Addition result: Locations 3 7 1 4
Cost: 8

*add D to
the set*

begin with A, C, D, & G (1,3,4,7)

Substitution Step

Cost	Locations
9	2 7 1 4
26	3 2 1 4
12	3 7 2 4
9	3 7 1 2
8	5 7 1 4
25	3 5 1 4
11	3 7 5 4
8	3 7 1 5
10	6 7 1 4
18	3 6 1 4
12	3 7 6 4
9	3 7 1 6
9	8 7 1 4
17	3 8 1 4
11	3 7 8 4
8	3 7 1 8

substitute E
for C in the set

Substitution result: Locations 5 7 1 4

Cost: 8

Allocation of Customers to Warehouses

	A	B	C	D	E	F	G	H
F	0	4	6	6	6	0	32	6
R	6	3	2	0	4	0	24	4
O	18	4	6	12	0	0	32	6
M	24	7	10	18	8	0	0	3

1-Median of a Tree

For any set C of vertices, define $W(C) = \sum_{i \in C} w_i$

Theorem Let $[a,b]$ be any edge of a tree, and
let $A =$ set of vertices reachable from a without
passing through b
 $B =$ set of vertices reachable from b without
passing through a .

Then $W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

$W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

To find the 1-median of a tree:

0. Let $W = \sum_{i \in N} w_i$. Select any vertex j .
1. If $w_j \geq \frac{1}{2} W$, then stop; j is a 1-median.
2. If j has degree 1, let k be its neighbor, i.e., $[k, j]$ will be an edge.
Replace w_k with $w_k + w_j$, and delete vertex j from the tree.
Else find an elementary chain from vertex j to a vertex k with degree 1 (preferably using previously unused edges.)
Let $j = k$ and return to step 1.

Example

Find the 1-median of the tree:

Let's choose to begin with vertex #7.

Total "demand" $\sum_{i \in N} w_i$ is 30.

$w_7 < \frac{W}{2} = 15$. Select neighbor (vertex #6), and
replace w_6 with $w_6 + w_7 = 3$. Delete vertex #7.

$w_6 < \frac{W}{2} = 15$. Find a path $6 \rightarrow 8$ to a vertex (#8) with degree 1:

$w_8 < \frac{W}{2} = 15$. Select neighbor (vertex #6),
update w_6 , and delete vertex #8:

$w_6 < \frac{W}{2} = 15$. Select neighbor (vertex #5),
update w_5 , and delete vertex #6:

$w_5 < \frac{W}{2} = 15$. Select chain $5 \rightarrow 9 \rightarrow 10 \rightarrow 12$ to vertex #12, which has degree 1.

$w_{12} < \frac{W}{2} = 15$. Select neighbor (vertex #10),
update w_{10} , and delete vertex #12

... after several more iterations, the tree is as shown, where vertex #9 is being considered.

$w_9 < \frac{W}{2} = 15$, so we select its neighbor (vertex #5), update w_5 , and delete vertex #9.

$w_5 > \frac{W}{2} = 15$, so we stop; Vertex #5 is the 1-median.

$W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

Edge (5,9): $w(9) = 14 < 16 = w(5)$ implies $\tau(9) > \tau(5)$

$W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

Edge [5,4]: $W(5) = 22 > 8 = W(4)$ implies $\tau(4) > \tau(5)$

