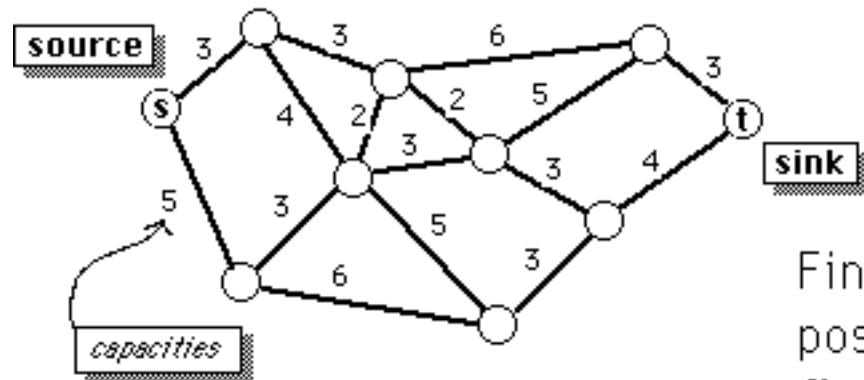
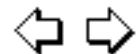


Maximum Flow Problem



Find the maximum possible amount of flow in the network from the source **s** to the sink **t**



ALGORITHM

Given: a network with designated source & sink,
each arc having a capacity in each direction.
(Capacity of arc (i,j) need not equal that of (j,i))

Step 0 Initially, let the flow in each arc be zero.

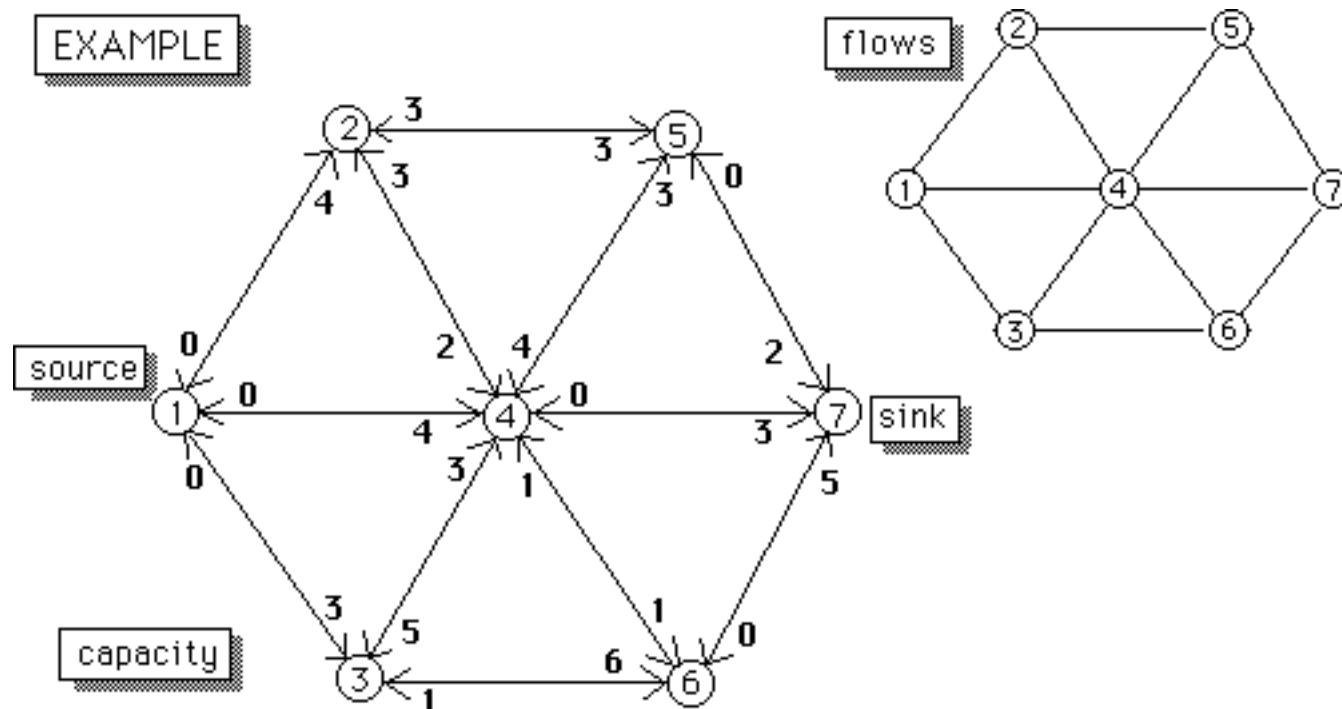
Step 1 Find any path from source to sink that
has positive flow capacity (in direction of
flow) for every arc in the path. If no such
path exists, STOP.

*(For example, try to construct a
spanning tree, using only arcs
with positive capacity.)*

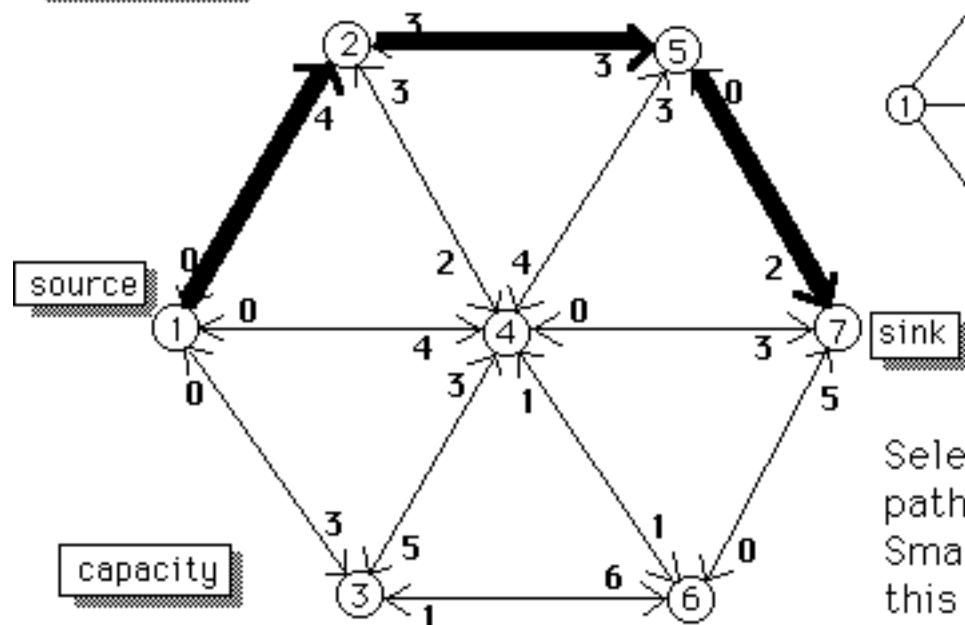
Step 2 Find the smallest arc capacity k on this path (*the flow-augmenting path*). Increase the flow in this path by k .

Step 3 For each arc in the flow-augmenting path, **reduce** all capacities in the direction of the flow by the amount k , and **increase** all capacities in the direction opposite the flow by k .

Return to Step 1.

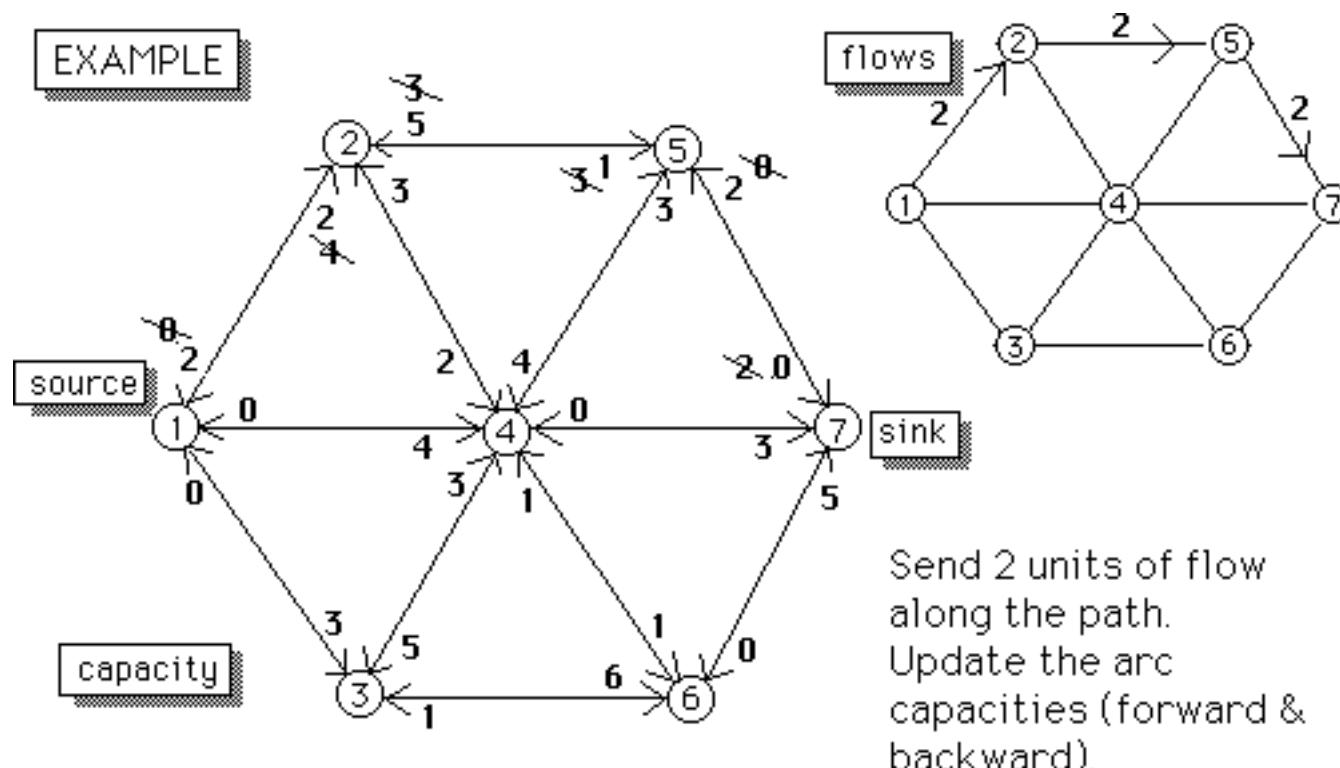


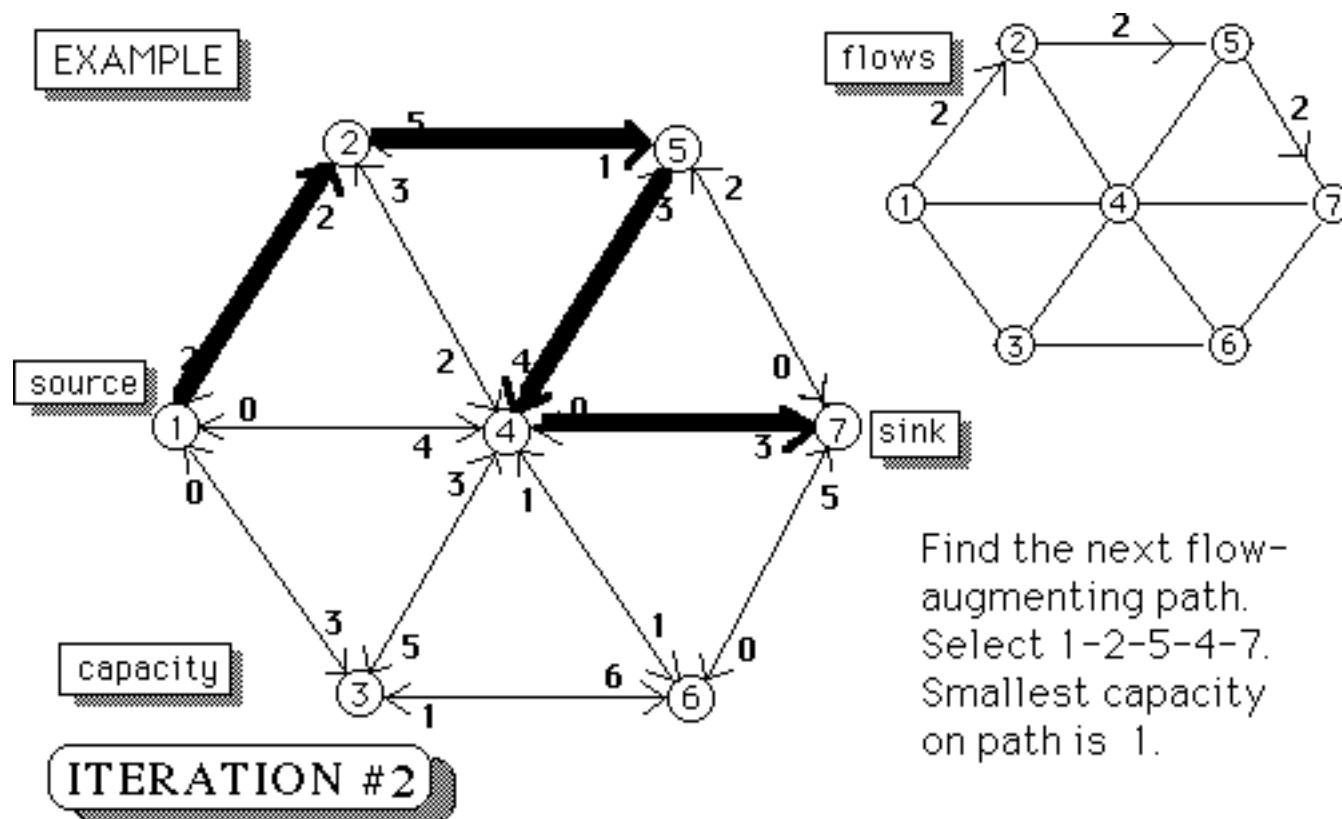
EXAMPLE

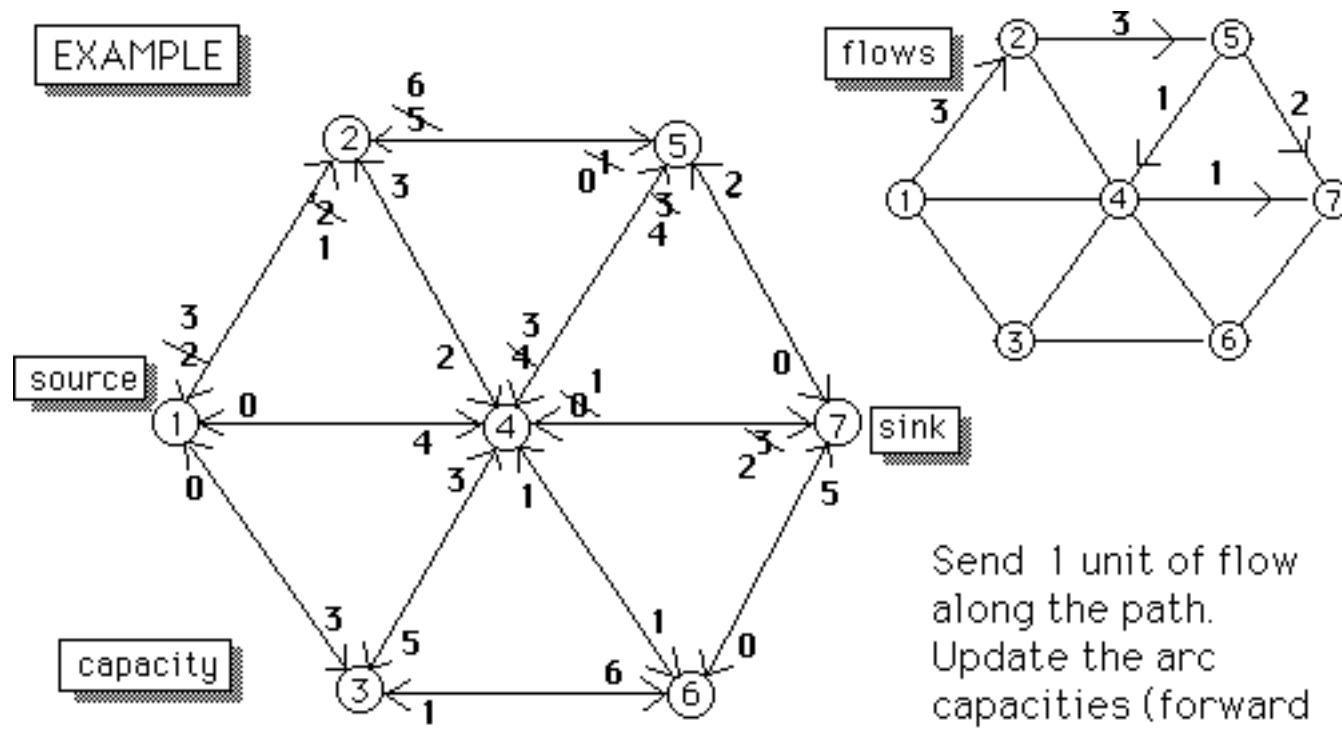


Select flow-augmenting path 1-2-5-7.
Smallest capacity on this path is 2.

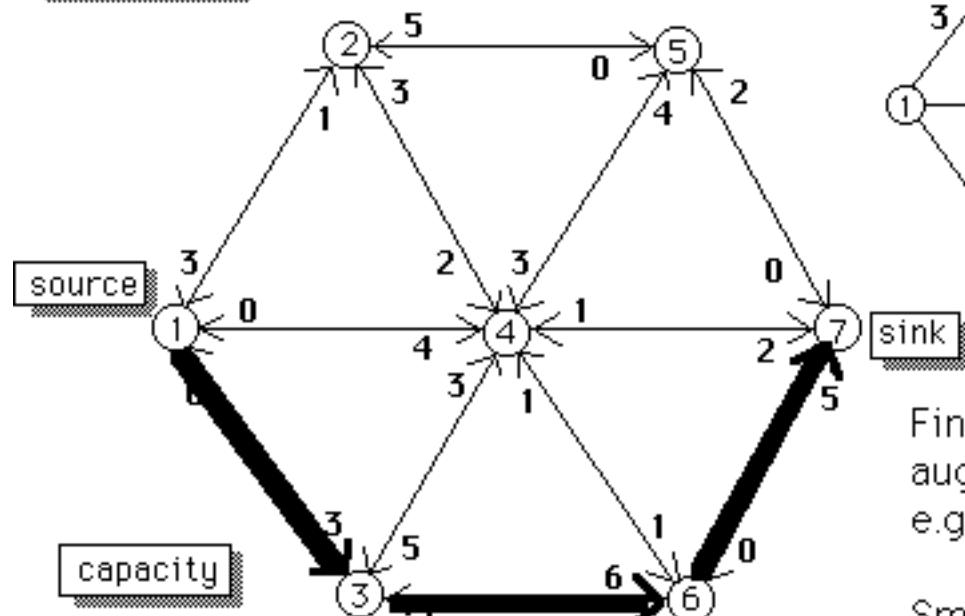
ITERATION #1





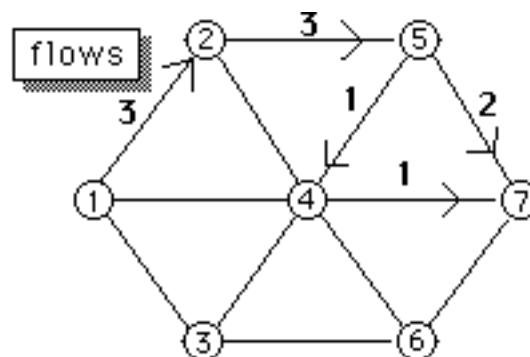


EXAMPLE

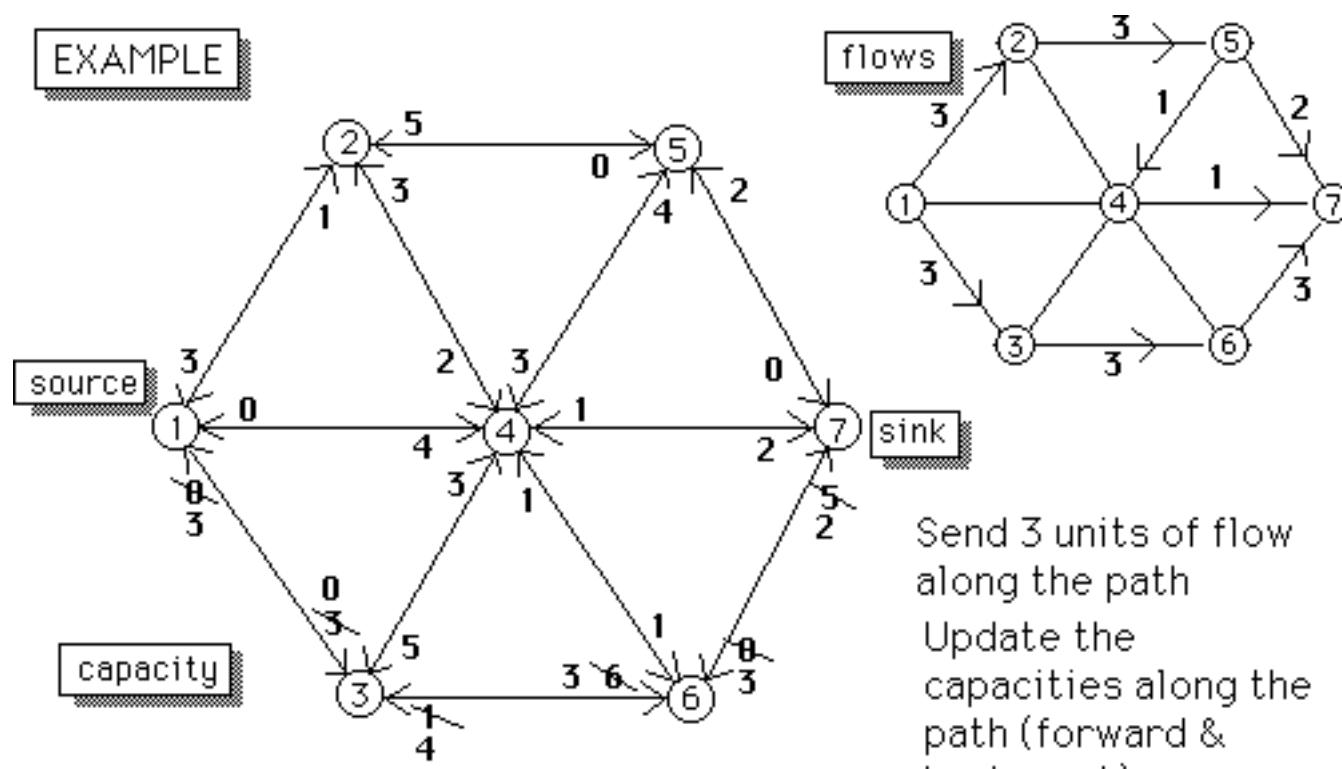


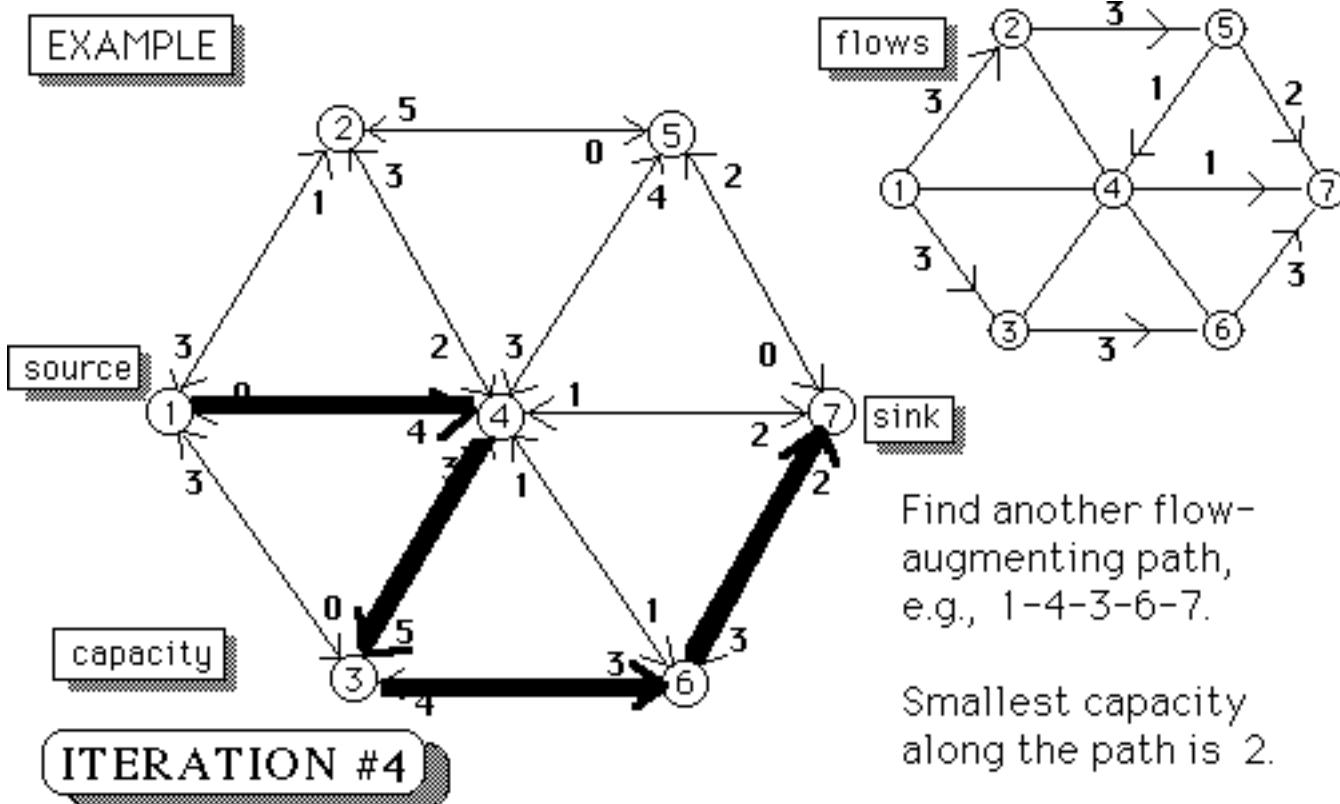
Find another flow-augmenting path,
e.g. 1-3-6-7

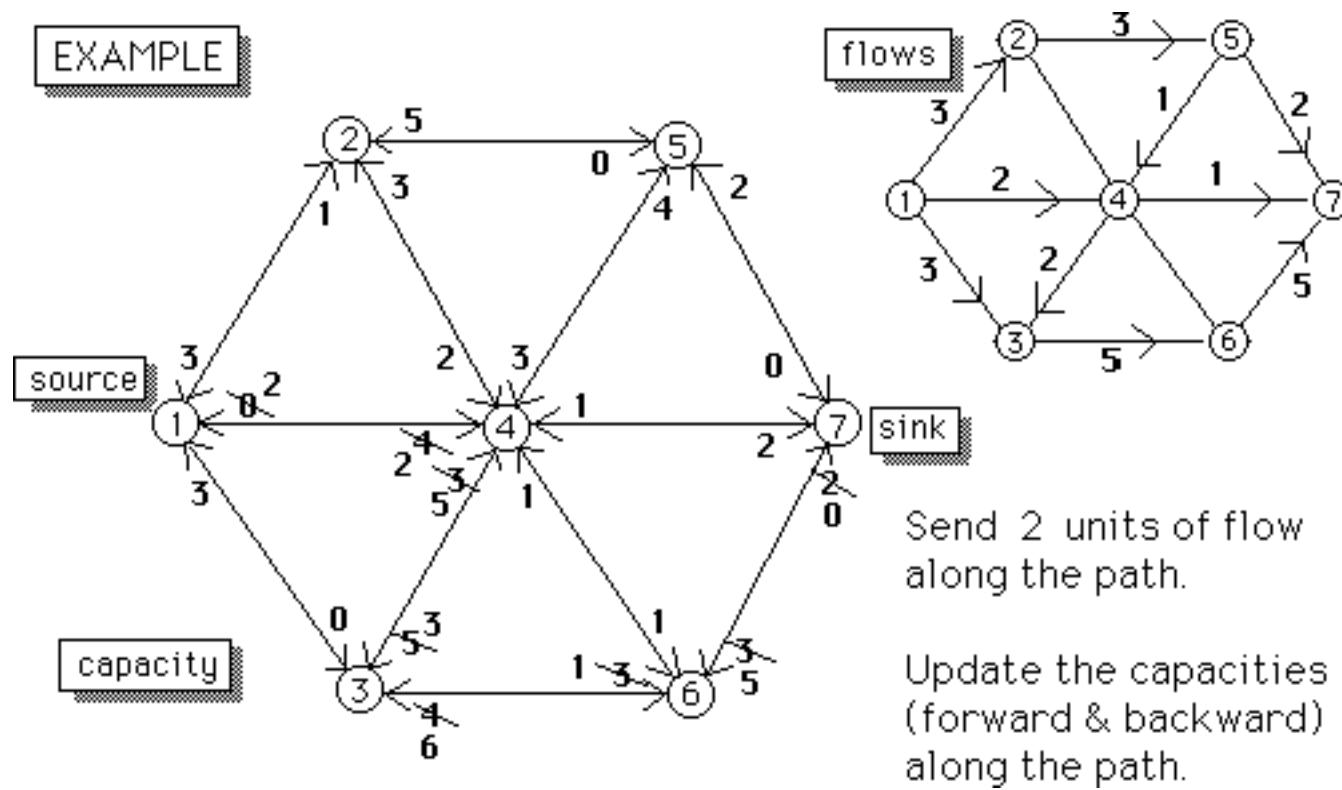
Smallest capacity along path is 3.

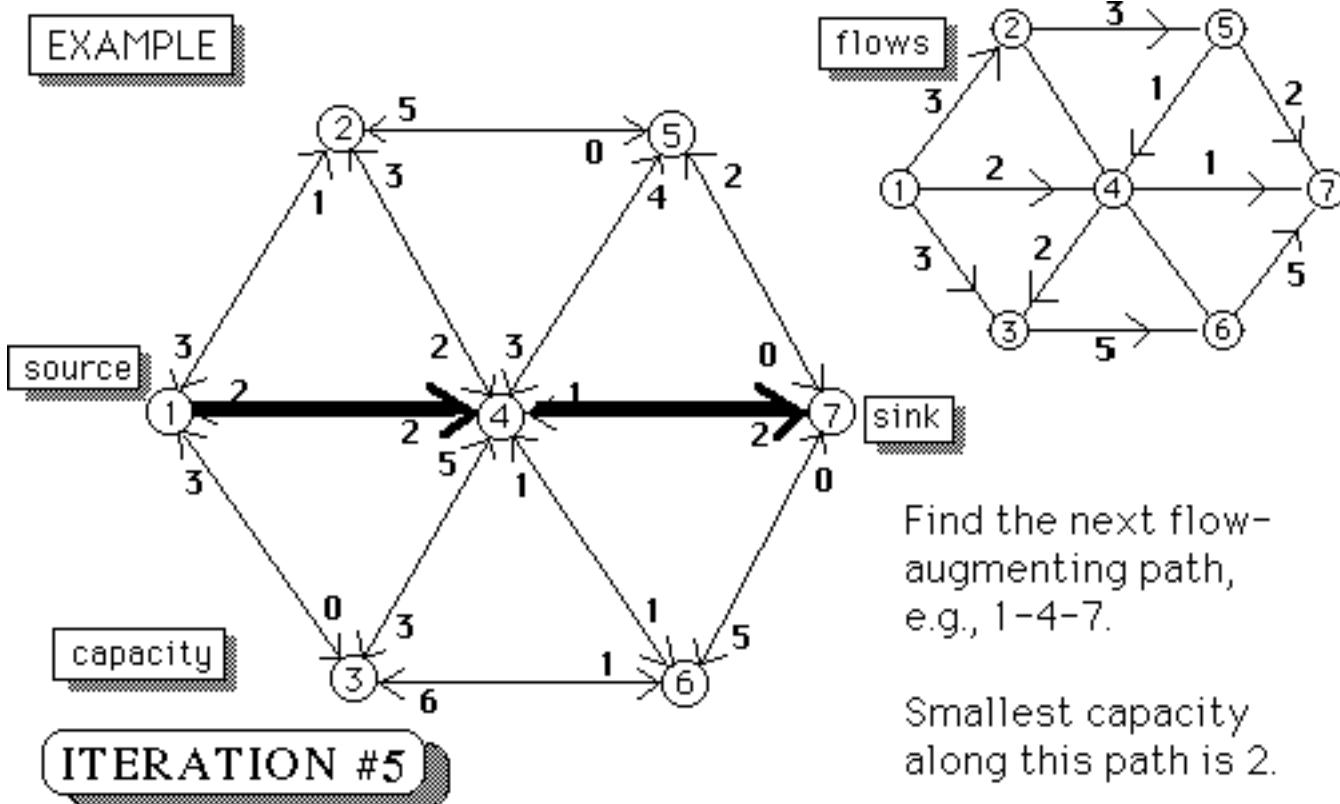


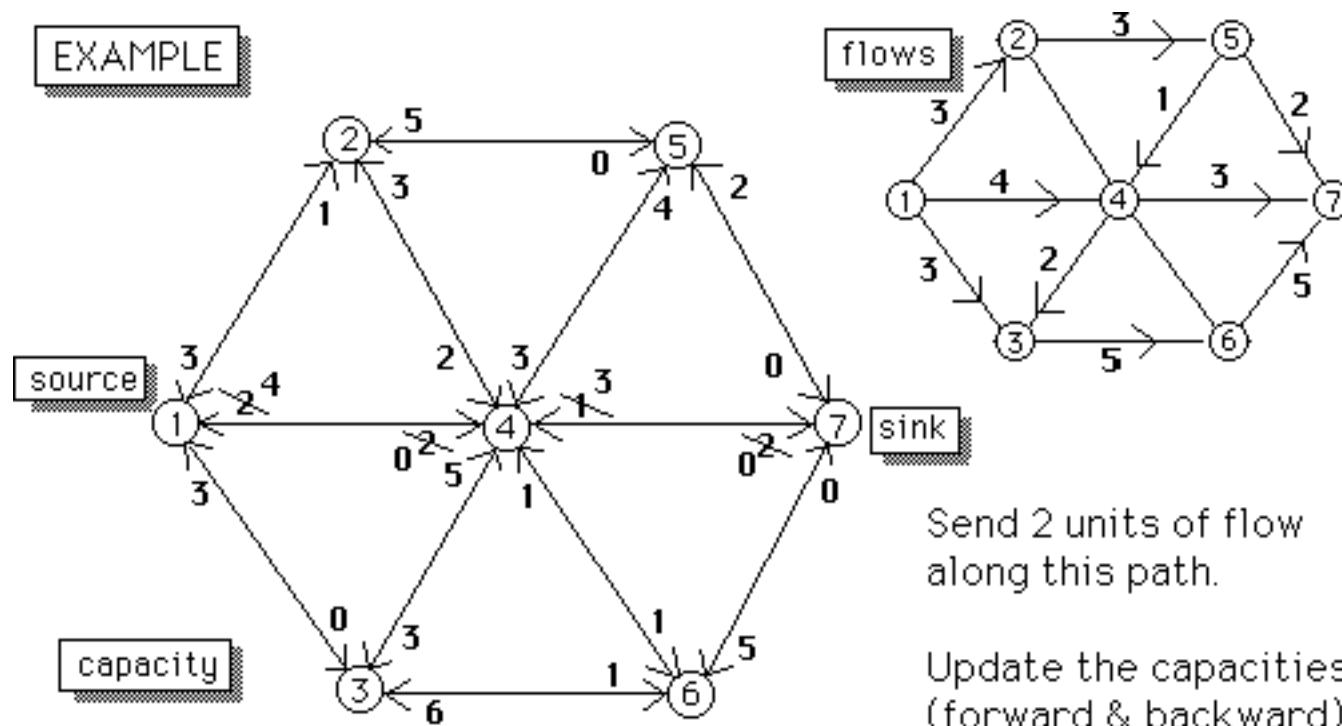
ITERATION #3

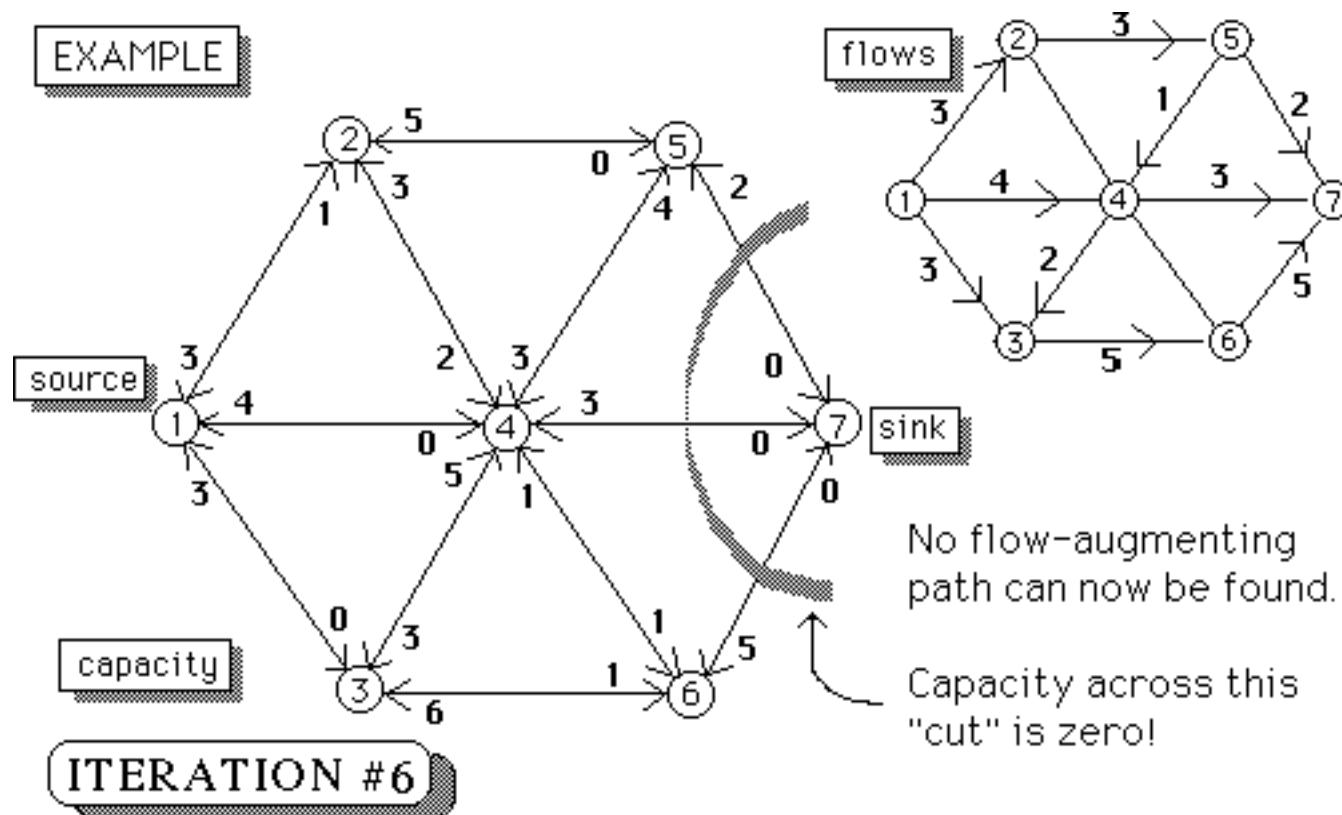










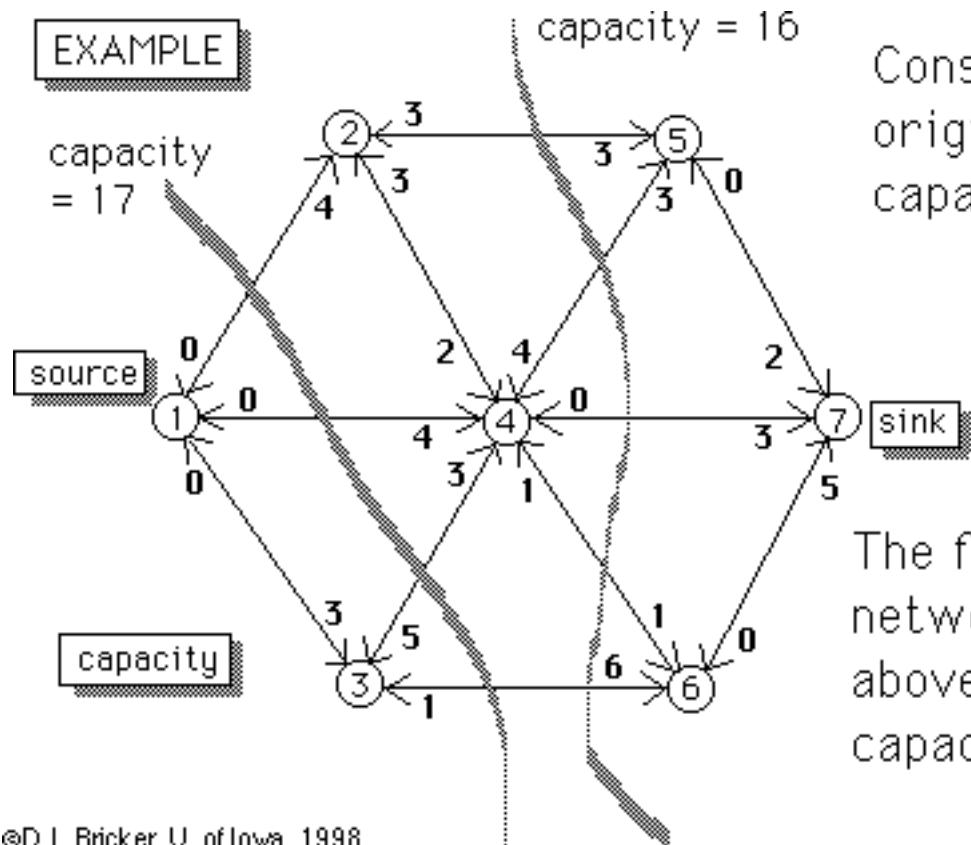


Definition

A *cut* of a network is a partition of the node set N into 2 subsets, N_1 and N_2 , such that

- $N = N_1 \cup N_2$,
- $N_1 \cap N_2 = \emptyset$,
- the source node is in N_1 ,
- the sink node is in N_2

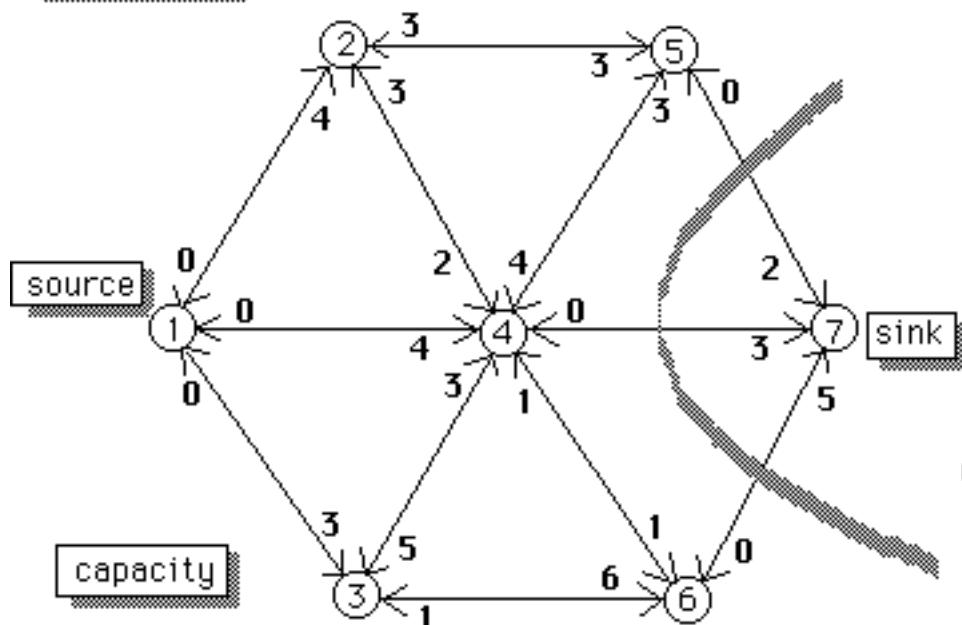
The *capacity* of the cut is $\sum_{i \in N_1} \sum_{j \in N_2} c_{ij}$

EXAMPLE

Consider the
original arc
capacities

The flow in a
network is bounded
above by the
capacity of any cut.

EXAMPLE



Capacity of this
"cut" is 10

= maximum flow

MAX-FLOW/MIN-CUT THEOREM

The maximum flow in a network is equal to the capacity of the cut having the minimum cut capacity.