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A taxi serves three adjacent towns:  A, B, and C.

Each time the taxi discharges a passenger, the driver must

choose from three possible actions:

(1) "Cruise" the streets looking for a passenger.
(2) Go to the nearest taxi stand (hotel, train station, etc.)
(3) Wait for a radio call from the dispatcher with instructions

(but not possible in town B because of distance and poor
reception).
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MDP model:
States:  {A, B, C}

Action sets:
KA = {1,2,3}, KB = {1,2,3}, KC = {1,2}

Transition probability matrices

Cruising
streets

Waiting at
taxi stand

Waiting for
dispatch

1

1 1 1
2 4 4

1 102 2
1 1 1

4 4 2

P

 
 
 =
 
 
 

2

3 31
16 4 16

71 1
16 8 16

31 1
8 4 8

P

 
 
 =
 
 
  

3

51 1
4 8 8

0 1 0

3 31
4 16 16

P

 
 
 =
 
  
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Payoff matrices (expected profit per passenger):

k
ijR = expected profit if action k is selected, and passenger

wishes to travel from town i to town j

Cruising
streets

Waiting at
taxi stand

Dispatch
call

1

10 4 8

14 0 18

10 2 8

R

 
 =  
  

2

8 2 4

8 16 8

6 4 2

R

 
 =  
  

3

4 6 4

0 0 0

4 0 8

R

 
 =  
  

Since our model assumes minimization of cost, we use
k k k
i ij ij

j

C P R= −∑
Note:  This example was introduced by Ron Howard in his textbook, Dynamic
Programming and Markov Processes, MIT  Press (1960), in which no consideration
was given to the variable amount of time per stage (trip) in the optimization model.
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States:
| i | state  |
| 1 | town A |
| 2 | town B |
| 3 | town C |

Actions:
k | action     |
1 | CRUISE     |
2 | TAXISTAND  |
3 | RADIO CALL |

Cost Matrix

| i | state      1     2      3

| 1 | town A |   ¯8  ¯2.75  ¯4.25
| 2 | town B |  ¯16 ¯15    999
| 3 | town C |   ¯7  ¯4     ¯4.5

(Rows ~ states, Columns ~ actions)

A value of 999 above signals an infeasible action in a state.

Note that the algorithm assumes minimization, and so the "cost" is the
negative of the expected payoffs!
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Transition Probabilities
Action: CRUISE

f|     to
r|     ¯¯
o|  1    2    3
m|¯¯¯¯ ¯¯¯¯ ¯¯¯¯
1|0.5  0.25 0.25
2|0.5  0    0.5
3|0.25 0.25 0.5

Action: TAXISTAND
f|       to
r|       ¯¯
o|   1     2      3
m|¯¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯¯
1|0.0625 0.75  0.1875
2|0.0625 0.875 0.0625
3|0.125  0.75  0.125

Action: RADIO CALL
f|       to
r|       ¯¯
o|  1     2      3
m|¯¯¯¯ ¯¯¯¯¯¯ ¯¯¯¯¯¯
1|0.25 0.125  0.625
2|0    1      0
3|0.75 0.0625 0.1875
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Let's first use the criterion: Maximize average reward per trip

LP Tableau for MDP

k:  |   1      2       3     1       2      1      2      3    |
i:  |   1 1 1     2 2      3 3 3    |RHS

Min | ¯8    ¯2.75   ¯4.25  ¯16   ¯15      ¯7    ¯4     ¯4.5    |  0

|  0.5   0.9375  0.75   ¯0.5  ¯0.0625 ¯0.25 ¯0.125 ¯0.75   |  0

| ¯0.25 ¯0.75   ¯0.125   1     0.125  ¯0.25 ¯0.75  ¯0.0625 |  0

|  1 1 1 1 1 1 1 1      |  1

Note that one of the "steadystate" equations (for state C) was eliminated

because of redundancy.
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Minimize

subject  to     for all states

1

0   for  all  states    and actions

a a
i i

i a

a a a
j ij i

j i a

a
i

i a

a
i i

c x

x p x j

x

x i a A

=

=

≥ ∈

∑∑

∑ ∑∑

∑∑
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Phase One procedure was used to find an initial basic feasible
solution

Iteration 0

Policy: (Cost= ¯8 )
State          |  Action              |  P{i}       |  R{i}
1)    town A  |   3)     RADIO CALL  |   0.283186  |   ¯4
2)    town B  |   1)     CRUISE      |   0.327434  |    6
3)    town C  |   2)     TAXISTAND   |   0.389381  |    8
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k:  |       1         2 3 1 2          1 2 3     |
i:  |       1 1 1 2 2          3 3 3     | rhs

Min |  ¯3.5       ¯3        0 0 ¯6 0.5       0  6.125    |  8

|   0.725664   1.0531   1 0  0.247788 ¯0.0176991 0 ¯0.473451 |  0.283186

|   0.0265487 ¯0.376106 0 1 0.411504 0.292035  0  0.561947 |  0.327434

|   0.247788   0.323009 0 0  0.340708  0.725664  1  0.911504 |  0.389381

Initially the basic variables are { }3 1 2, ,A B CX X X (exactly one per state).

The values of these variables are the steadystate probabilities of

the Markov chain corresponding to the policy (3, 1, 2).

The "most negative" reduced cost is −6−6 (of variable 2
BX ), and so

that variable should enter the basis, replacing 1
BX . (The pivot

element is 0.411504, indicated above.)
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Iteration 1

Policy: (Cost= ¯12.7742 )
State          |  Action              |  P{i}        |  R{i}
1)    town A  |   3)     RADIO CALL  |   0.0860215  |   ¯9.16129
2)    town B  |   2)     TAXISTAND   |   0.795699   |   13.2258
3)    town C  |   2)     TAXISTAND   |   0.11828    |   12.7742

k:  |       1         2     3     1     2     1     2     3     |
i:  |       1 1 1     2 2     3 3 3     | rhs

Min |  ¯3.1129 ¯8.48387 0 14.5806   0  4.75806  0 14.3185   |  12.7742

|   0.709677 1.27957 1 ¯0.602151 0 ¯0.193548 0 ¯0.811828 |   0.0860215

|   0.0645161 ¯0.913978 0  2.43011  1  0.709677 0  1.36559  |   0.795699

|   0.225806   0.634409 0 ¯0.827957 0  0.483871 1  0.446237 |   0.11828

The next pivot should enter 2
AX into the basis, replacing 3

AX .



MDP: Taxi page 12

Iteration 2

Policy: (Cost= ¯13.3445 )
State          |  Action             |  P{i}        |  R{i}
1)    town A  |   2)     TAXISTAND  |   0.0672269  |   ¯1.17647
2)    town B  |   2)     TAXISTAND  |   0.857143   |   12.6555
3)    town C  |   2)     TAXISTAND  |   0.0756303  |   13.3445

k:  |      1     2     3         1     2     1     2     3     |
i:  |      1 1 1         2 2     3 3 3     | rhs

Min |   1.59244  0  6.63025  10.5882   0  3.47479  0  8.93592  |  13.3445

|   0.554622 1  0.781513 ¯0.470588 0 ¯0.151261 0 ¯0.634454 |   0.0672269

|   0.571429 0  0.714286  2        1  0.571429 0  0.785714 |   0.857143

|  ¯0.12605  0 ¯0.495798 ¯0.529412 0  0.579832 1  0.848739 |   0.0756303

All reduced costs are nonnegative!
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Optimal Policy

State  |  Action         |  P{i}      |  R{i}
1) town A  |   2) TAXISTAND  | 0.0672269  |  ¯1.17647
2) town B  |   2) TAXISTAND  | 0.857143   |  12.6555
3) town C  |   2) TAXISTAND  | 0.0756303  |  13.3445

Average cost/stage = ¯13.3445
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Value Iteration Method
(Note:  objective:  maximize average reward per passenger)

We want to compute
( )

lim n

n

f i

n→∞

where ( ) ( )
i

a a
n i ij n

a A
j

f i C p f j−∈

 
= + 

 
∑

Since
( )

lim n

n

f i

n→∞
should be independent of the state i, our

convergence criterion is to compute

( ) ( ) ( )1

1
n nf i f i

f i
n n

−∆ = −
−

and terminate when ( ){ } ( ){ }max   minn n
ii

f i f i ε∆ − ∆ ≤
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Tolerance:    1.00E¯6

Minimizing average cost/period

iteration   Max ∆V          Min ∆V         gap (%)
1  ¯9.75000E0     ¯1.39375E1      3.00448E1
2  ¯1.19141E1     ¯1.34844E1      1.16454E1
3  ¯1.32314E1     ¯1.33579E1      9.46741E¯1
4  ¯1.33307E1     ¯1.33465E1      1.18444E¯1
5  ¯1.33431E1     ¯1.33448E1      1.27635E¯2
6  ¯1.33444E1     ¯1.33446E1      1.59546E¯3
7  ¯1.33445E1 ¯1.33445E1      1.91449E¯4
8  ¯1.33445E1 ¯1.33445E1      2.39312E¯5

***Converged! with gap = 0.0000239312%

Solution:
state   action      Value

1        2   ¯13.3445
2 2   ¯13.3445
3        2   ¯13.3445
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Plot of ( ) ( )1n nf i f i−−
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Plot of ( ){ } ( ){ }10log  max   minn n
ii

f i f i ∆ − ∆ 
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Next we will solve the problem with the objective of maximizing

the total discounted payoff.

Criterion:  Discounted Total Cost, with β = (1.2)-1 = 0.833333

k: |    1      2      3      1      2     1      2       3    |
i: |    1 1 1      2 2     3 3 3    | RHS

Min| ¯8     ¯2.75  ¯4.25 ¯16    ¯15     ¯7     ¯4     ¯4.5    |  0

|  0.583  0.948  0.792 ¯0.417 ¯0.052 ¯0.208 ¯0.104 ¯0.625  |  1

| ¯0.208 ¯0.625 ¯0.104  1      0.271 ¯0.208 ¯0.625 ¯0.052  |  0

| ¯0.208 ¯0.156 ¯0.521 ¯0.417 ¯0.052  0.583  0.895  0.843  |  0

Note:  Specifying initial conditions to be deterministic, with town A
as initial state

0    ,

i

j i

a a
i i

i a A

a a a
j ij i

a A i a A

a
i i

Minimize C X

subject to X P X j

X a A i

β
∈

∈ ∈

= ∀

≥ ∀ ∈ ∀

∑∑

∑ ∑∑
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Note that a
iX is not a probability in this model, and so the

equation

1a
i

i a

X =∑∑
is not included in the LP tableau.

There is one equation for each state (not including the objective

row), with no redundancy as in the average cost/stage LP

model, so the total number of variables, as before, is equal

to the number of states, and as before, in a basic feasible

solution there is one basic variable per state.
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Phase One procedure was used to find initial basic feasible
solution

Iteration 0

Policy: (Cost= ¯50.12 )
State          |  Action              |  X{i}     |  V{i}
1)    town A  |   1)     CRUISE      |   3.783   |   ¯50.12
2)    town B  |   1)     CRUISE      |   0.8589  |   ¯56.01
3)    town C  |   3)     RADIO CALL  |   1.358   |   ¯45.91

k:  |  1     2       3    1    2        1       2    3 |
i:  |  1 1 1    2 2        3 3 3 | rhs

Min |  0  2.574    5.677  0 ¯4.831  ¯2.327   ¯3.097  0 |  50.12
|  1  1.361    1.151  0  0.4107  0.3612   0.5118 0 |   3.783
|  0 ¯0.3425   0.1215 1  0.3679 ¯0.09487 ¯0.4685 0 |   0.8589
|  0 ¯0.01831 ¯0.273  0  0.2214  0.7337   0.9567 1 |   1.358

i~state, k~action
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Iteration 1

Policy: (Cost= ¯61.4 )
State          |  Action              |  X{i}     |  V{i}
1)    town A  |   1)     CRUISE      |   2.824   |   ¯61.4
2)    town B  |   2)     TAXISTAND   |   2.334   |   ¯77.89
3)    town C  |   3)     RADIO CALL  |   0.8414  |   ¯55.62

k:  |  1    2       3       1    2    1       2   3 |
i:  |  1 1 1       2 2    3 3 3 | rhs

Min |  0 ¯1.923   7.273  13.13   0 ¯3.573  ¯9.249 0 |  61.4
|  1  1.743   1.016  ¯1.116  0  0.4671  1.035 0 |   2.824
|  0 ¯0.9308  0.3302  2.718  1 ¯0.2579 ¯1.273 0 |   2.334
|  0  0.1877 ¯0.3461 ¯0.6017 0  0.7908  1.239 1 |   0.8414

i~state, k~action
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Iteration 2

Policy: (Cost= ¯67.68 )
State   |          Action     |  X{i}     |  V{i}

1)    town A  |   1)     CRUISE     |   2.121   |   ¯67.68
2)    town B  |   2)     TAXISTAND  |   3.199   |   ¯81.74
3)    town C  |   2)     TAXISTAND  |   0.6793  |   ¯69.36

k:  |  1    2        3       1    2    1    2    3    |
i:  |  1 1 1       2 2    3 3 3    | rhs

Min |  0 ¯0.5206  4.689    8.638  0  2.332  0  7.467  |  67.68
|  1  1.586   1.305   ¯0.6136 0 ¯0.1936 0 ¯0.8355 |   2.121
|  0 ¯0.7378 ¯0.02557  2.099  1  0.5551 0  1.028  |   3.199
|  0  0.1516 ¯0.2794  ¯0.4858 0  0.6384 1  0.8073 |   0.6793

i~state, k~action
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Iteration 3

Policy: (Cost= ¯68.37 )
State   |          Action     |  X{i}     |  V{i}

1)    town A  |   2)     TAXISTAND  |   1.337   |   ¯68.37
2)    town B  |   2)     TAXISTAND  |   4.186   |   ¯81.91
3)    town C  |   2)     TAXISTAND  |   0.4766  |   ¯69.56

k:  |    1    2    3       1    2    1    2    3    |
i:  |    1 1 1       2 2    3 3 3    | rhs

Min | 0.3282  0  5.117   8.437  0  2.269  0  7.193  | 68.37
| 0.6304  1  0.8227 ¯0.3868 0 ¯0.122  0 ¯0.5267 |  1.337
| 0.4651  0  0.5814  1.814  1  0.4651 0  0.6395 |  4.186
|¯0.09556 0 ¯0.4041 ¯0.4271 0  0.6569 1  0.8872 |  0.4766

i~state, k~action

Reduced costs are now nonnegative!
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Optimal Policy

State  |    Action     |  X{i}   |  V{i}     | alpha{i}
1)    town A  | 2) TAXISTAND  | 1.337   |  ¯68.37   |    1
2)    town B  | 2) TAXISTAND  | 4.186   |  ¯81.91   |    0
3)    town C  | 2) TAXISTAND  | 0.4766  |  ¯69.56   |    0

Alpha is initial distribution of the state

Discounted future costs = ¯68.37
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Value Iteration Method

Tolerance:    1.00E¯6

Minimizing discounted future costs
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
iteration   Max ∆V          Min ∆V         gap (%)

1  ¯8.12500E0     ¯1.14479E1      2.90264E1
2  ¯7.55425E0     ¯9.21658E0      1.80363E1
3  ¯7.04056E0     ¯7.57706E0      7.08063E0
4  ¯6.24756E0     ¯6.28089E0      5.30648E¯1
5  ¯5.22831E0     ¯5.23178E0      6.63601E¯2
6  ¯4.35921E0     ¯4.35951E0      6.89203E¯3
7  ¯3.63287E0     ¯3.63290E0      8.61510E¯4
8  ¯3.02741E0 ¯3.02741E0      1.02206E¯4
9  ¯2.52284E0 ¯2.52284E0      1.27758E¯5

***Converged! with gap = 0.00001278%
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Solution:
¯¯¯¯¯¯¯¯¯

state   action    Value
¯¯¯¯¯   ¯¯¯¯¯¯    ¯¯¯¯¯

1        2   ¯55.76
2 2   ¯69.30
3        2   ¯56.95
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Solving again….
Tolerance:    1.00E¯12 Reduced the tolerance!

iteration   Max ∆V          Min ∆V         gap (%)

1  ¯8.12500E0     ¯1.14479E1      2.90264E1
2  ¯7.55425E0     ¯9.21658E0      1.80363E1
3  ¯7.04056E0     ¯7.57706E0      7.08063E0
4  ¯6.24756E0     ¯6.28089E0      5.30648E¯1
5  ¯5.22831E0     ¯5.23178E0      6.63601E¯2
6  ¯4.35921E0     ¯4.35951E0      6.89203E¯3
7  ¯3.63287E0     ¯3.63290E0      8.61510E¯4
8  ¯3.02741E0 ¯3.02741E0      1.02206E¯4
9  ¯2.52284E0 ¯2.52284E0      1.27758E¯5
10  ¯2.10237E0 ¯2.10237E0      1.57556E¯6
11  ¯1.75198E0 ¯1.75198E0      1.96944E¯7
12  ¯1.45998E0 ¯1.45998E0      2.45345E¯8
13  ¯1.21665E0 ¯1.21665E0      3.06725E¯9
14  ¯1.01387E0 ¯1.01387E0      3.82647E¯10
15  ¯8.44896E¯1 ¯8.44896E¯1     4.79360E¯11

***Converged! with gap = 4.794E¯11%
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Solution:

state   action    Value

1        2   ¯64.15
2 2   ¯77.69
3        2   ¯65.34

Note:  Policy is same as the earlier run with larger tolerance, but
objective value is nearer to true value.
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Because the duration (in minutes) of a stage (trip) will depend

upon the policy which we select,

the objective of maximizing the reward per trip is inappropriate--

we should instead maximize the reward per unit time.

This requires that we treat this as a

Semi-Markov Decision Process (SMDP).
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Suppose we have the additional data:
Expected time to obtain passenger:

k
iW = expected waiting time (minutes) in town i when action k

is selected

Town \ Action Cruising Taxi stand Dispatch call
A 15 20 20
B 10 25 ∞
C 20 25 20

Expected travel time between towns:

ijT = expected travel time (minutes) from town i to town j
Town \ Town A B C

A 10 20 30
B 20 10 20
C 30 20 10
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Expected travel time (minutes) of trip = k
ij ij

j

P T∑ =

Cruise Taxi-stand Radio call
town A 17.5 21.25 23.75
town B 20 11.25 10
town C 17.5 20 25.625

a a
i iv E τ  @ = expected total duration of a trip (waiting + traveling)

when in town i if action a is selected, i.e., k k k
i i ij ij

j

E W P Tτ  = +  ∑ =

Cruise Taxi-stand Radio call
town A 32.5 41.25 43.75
town B 30 36.25 0
town C 37.5 45 45.625



MDP: Taxi page 37

Average reward per minute for the optimal policy (2,2,2) found by

the MDP:

average reward/trip $13.3445
$0.358262/min.

average duration of trip 37.2479 min.

a a
i i

i a
a a
i i

i a

c x

v x
= = =

∑∑
∑∑
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If we treat this as a Semi-Markov Decision Process (SMDP), then

we can find the policy which maximizes our reward per minute by

solving the LP:

Minimize

subject  to     for all states

1

0   for  all  states    and actions

a a
i i

i a

a a a
j ij i

j i a

a a
i i

i a

a
i i

c u

u p u j

v u

u i a A

=

=

≥ ∈

∑∑

∑ ∑∑

∑∑
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k:  |   1      2       3     1      2      1      2      3   |
i:  |   1 1 1     2 2      3 3 3   | RHS

Min | ¯8    ¯2.75   ¯4.25  ¯16  ¯15      ¯7    ¯4     ¯4.5   |  0

|  0.5   0.9375  0.75  ¯0.5  ¯0.0625 ¯0.25 ¯0.125 ¯0.75  |  0

| ¯0.25 ¯0.75   ¯0.125  1     0.125  ¯0.25 ¯0.75  ¯0.0625|  0

| 32.5  41.25   43.75  30    36.25   37.5  45     45.625 |  1

Note that this tableau differs from that of the LP for MDP only in the last

row!
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Optimal Policy:

State          |  Action             |  U{i}
1)    town A  |   1) CRUISE |   0.00331263
2)    town B  |   2)     TAXISTAND  |   0.0215321
3)    town C  |   2)     TAXISTAND  |   0.00248447

Average cost/unit time = ¯ 0.35942

The optimal policy (1,2,2) of the SMDP is different in town A, and

the average reward per minute is slightly larger ($0.35942) than

that ($0.358262) of the earlier policy (2,2,2).

In reality, of course, the infinite horizon is a much more problematic

assumption in this particular problem!)


