

MDP Example

©Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa A taxi serves three adjacent towns: A, B, and C.

Each time the taxi discharges a passenger, the driver must

choose from three possible actions:

- (1) "Cruise" the streets looking for a passenger.
- (2) Go to the nearest taxi stand (hotel, train station, etc.)
- (3) Wait for a radio call from the dispatcher with instructions (but not possible in town B because of distance and poor reception).

States : {A, B, C} Action sets : $K_A = \{1, 2, 3\}, K_B$	$B_{3} = \{1, 2, 3\}, K_{C} = \{1, 2\}$	
Transition probal	oility matrices	
Cruising streets	Waiting at taxi stand	Waiting for dispatch
$P^{1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$	$P^{2} = \begin{bmatrix} \frac{1}{16} & \frac{3}{4} & \frac{3}{16} \\ \frac{1}{16} & \frac{7}{4} & \frac{1}{16} \\ \frac{1}{16} & \frac{7}{8} & \frac{1}{16} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \end{bmatrix}$	$P^{3} = \begin{bmatrix} \frac{1}{4} & \frac{1}{8} & \frac{5}{8} \\ 0 & 1 & 0 \\ \frac{3}{4} & \frac{1}{16} & \frac{3}{16} \end{bmatrix}$
MDP: Taxi		page 3

Payoff matrices (expected profit per passenger):

 R_{ij}^{k} = expected profit if action k is selected, and passenger wishes to travel from town *i* to town *j*

Cruising	Waiting at	Dispatch		
streets	taxi stand	call		
$R^{1} = \begin{bmatrix} 10 & 4 & 8 \\ 14 & 0 & 18 \\ 10 & 2 & 8 \end{bmatrix}$	$R^2 = \begin{bmatrix} 8 & 2 & 4 \\ 8 & 16 & 8 \\ 6 & 4 & 2 \end{bmatrix}$	$R^{3} = \begin{bmatrix} 4 & 6 & 4 \\ 0 & 0 & 0 \\ 4 & 0 & 8 \end{bmatrix}$		

Since our model assumes *minimization* of cost, we use

$$C_i^k = -\sum_j P_{ij}^k R_{ij}^k$$

Note: This example was introduced by Ron Howard in his textbook, *Dynamic Programming and Markov Processes*, MIT Press (1960), in which no consideration was given to the variable amount of time per stage (trip) in the optimization model.

Actions:

			i	state	е			
			1	town	A			
		İ	2	town	В			
		j	3	town	C			
		·		•	I			
		k	a	ction				
		1	CI	RUISE		1		
		2	і́т7	AXISTA	ND			
		3	RZ	ADIO CZ	ALL			
			I			I		
			Cos	st Mati	rix			
			<u> </u>					
	i	state	5	1		2	3	
	1	town	Δ	-8	- 2	2.75	-4.25	
İ	2	town		!				
	3			-7	-4		-4.5	
		town		1	_	_	4.0	
(ROW)	5~	states,	COT		act.	LOUS)		

A value of 999 above signals an infeasible action in a state.

Note that the algorithm assumes minimization, and so the "cost" is the negative of the expected payoffs!

Action: CRUISE	Transition Probabilities
	f to
	r
	o 1 2 3
	m
	1 0.5 0.25 0.25
	2 0.5 0 0.5
	3 0.25 0.25 0.5
Action: TAXISTAND	
	f to r
	o 1 2 3
	m
	1 0.0625 0.75 0.1875
	2 0.0625 0.875 0.0625
	3 0.125 0.75 0.125
Action: RADIO CALL	
	f to
	r
	0 1 2 3
	m 1 0.25 0.125 0.625
	2 0 1 0
	3 0.75 0.0625 0.1875
	1

Let's first use the criterion: Maximize average reward per trip

LP Tableau for MDP

k:	1	2	3	1	2	1	2	3	
<u>i:</u>	1	1	1	2	2	3	3	3	RHS
Min	-8	-2.75	-4.25	-16	-15	-7	-4	-4.5	0
	0.5	0.9375	0.75	-0.5	-0.0625	-0.25	-0.125	-0.75	0
	-0.25	-0.75	-0.125	1	0.125	-0.25	-0.75	-0.0625	0
	1	1	1	1	1	1	1	1	1

Note that one of the "steadystate" equations (for state C) was eliminated because of redundancy.

Minimize
$$\sum_{i} \sum_{a} c_{i}^{a} x_{i}^{a}$$

subject to $\sum_{j} x_{j}^{a} = \sum_{i} \sum_{a} p_{ij}^{a} x_{i}^{a}$ for all states j
 $\sum_{i} \sum_{a} x_{i}^{a} = 1$
 $x_{i}^{a} \ge 0$ for all states i and actions $a \in A_{i}$

Phase One procedure was used to find an **initial basic feasible** solution

Iteration 0

```
Policy: (Cost= -8 )
                   Action
                                         P{i}
 State
  1)
                    3)
                           RADIO CALL
                                          0.283186
        town A
                                          0.327434
  2) town B
                    1)
                           CRUISE
  3)
                    2)
                                          0.389381
     town C
                           TAXISTAND
```

 $R{i}$

-4 6

8

k:	1	2	3	1	2	1	2	3		
<u>i:</u>	1	1	1	2	2	3	3	3		rhs
Min	-3.5	-3	0	0	<mark>-6</mark>	0.5	0	6.125		8
	0.725664	1.0531	1	0	0.247788	-0.0176991	0	-0.473451		0.283186
	0.0265487	-0.376106	0	1	0.411504	0.292035	0	0.561947		0.327434
	0.247788	0.323009	0	0	0.340708	0.725664	1	0.911504		0.389381

The values of these variables are $\{X_A^3, X_B^1, X_C^2\}$ (exactly one per state). The values of these variables are the *steadystate probabilities* of

the Markov chain corresponding to the policy (3, 1, 2).

The "most negative" reduced cost is -6 (of variable X_B^2), and so that variable should enter the basis, replacing X_B^1 . (The pivot element is 0.411504, indicated above.)

Policy: (Cost= -12.7742) P{i} State Action R{i} 1) 3) RADIO CALL 0.0860215 -9.16129 town A 0.795699 2) town B 2) TAXISTAND 13.2258 3) 2) TAXISTAND 0.11828 12.7742 town C k: 2 3 2 3 1 2 1 1 i: 2 1 1 1 2 3 3 3 rhs 0 14.3185 $^{-3.1129}$ ^{-8.48387} 0 14.5806 0 4.75806 12.7742 Min 0.709677 1.27957 1 -0.602151 0 -0.193548 0 -0.811828 0.0860215 0.0645161 -0.913978 0 2.43011 1 0.709677 0 1.36559 0.795699 0.225806 $0.634409 \ 0^{-}0.827957 \ 0 \ 0.483871 \ 1 \ 0.446237$ 0.11828

The next pivot should enter X_A^2 into the basis, replacing X_A^3 .

Policy: (Cost= -13.3445)

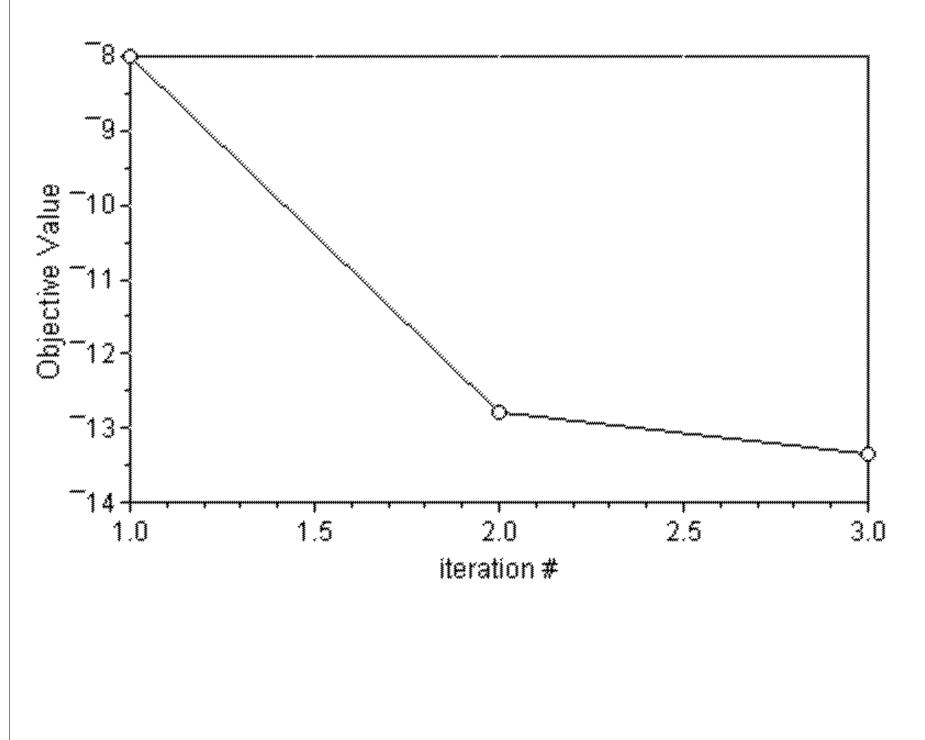
C S	Stat	2e		Actic	n		P{	i}		R{i}
	1)	town	A	2)	TAXIST	ſAÌ	ND 0	.0	672269	$^{-1.17647}$
	2)	town	В	2)	TAXIST	ſAÌ	ND 0	.8	57143	12.6555
	3)	town	С	2)	TAXIST	ſAI	ND 0	.0	756303	13.3445
k:		1	2	3	1	2	1	2	3	
<u>i</u> :		1	1	1	2	2	3	3	3	rhs
Min	.	1.59244	0	6.63025	10.5882	0	3.47479	0	8.93592	13.3445
		0.554622	1	0.781513	$^{-}0.470588$	0	-0.151261	0	-0.634454	0.0672269
		0.571429	0	0.714286	2	1	0.571429	0	0.785714	0.857143
		-0.12605	0	-0.495798	-0.529412	0	0.579832	1	0.848739	0.0756303

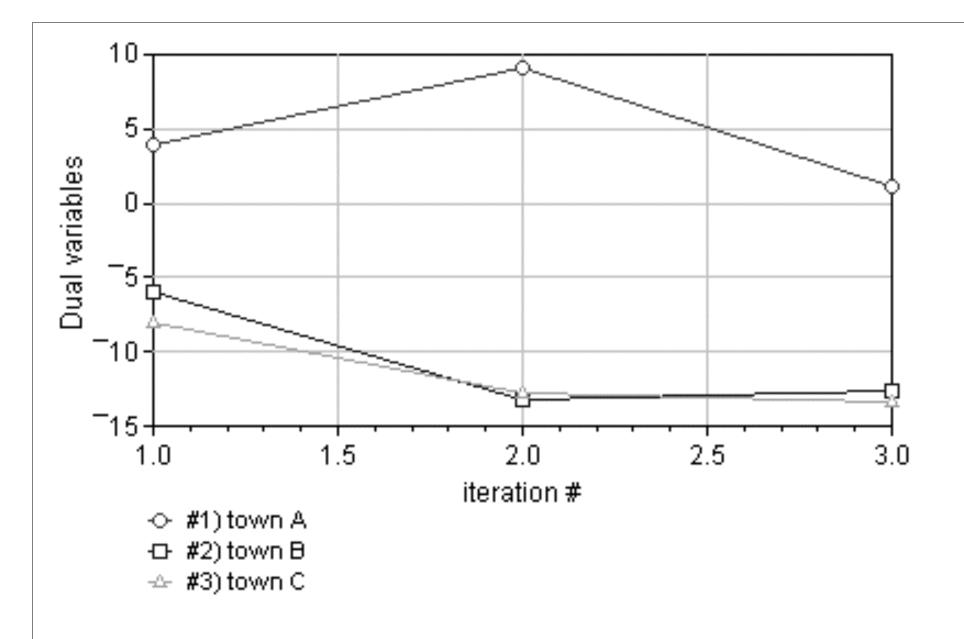
All reduced costs are nonnegative!

Optimal Policy

State	Action	P{i}	R{i}
1) town A	2) TAXISTAND	0.0672269	⁻ 1.17647
2) town B	2) TAXISTAND	0.857143	12.6555
3) town C	2) TAXISTAND	0.0756303	13.3445

Average cost/stage = -13.3445





Value Iteration Method

(Note: objective: maximize average reward per passenger)

We want to compute $\lim_{n \to \infty} \frac{f_n(i)}{d}$

where
$$f_{n}(i) = {}_{a \in A_{i}} \left\{ C_{i}^{a} + \sum_{j} p_{ij}^{a} f_{n-}(j) \right\}$$

Since $\lim_{n\to\infty} \frac{f_n(i)}{n}$ should be independent of the state i, our

convergence criterion is to compute

$$\Delta f(i) = \left| \frac{f_n(i)}{n} - \frac{f_{n-1}(i)}{n-1} \right|$$

and terminate when $\max_i \{\Delta f_n(i)\} - \min_i \{\Delta f_n(i)\} \le e$

Tolerance: 1.00E⁻6

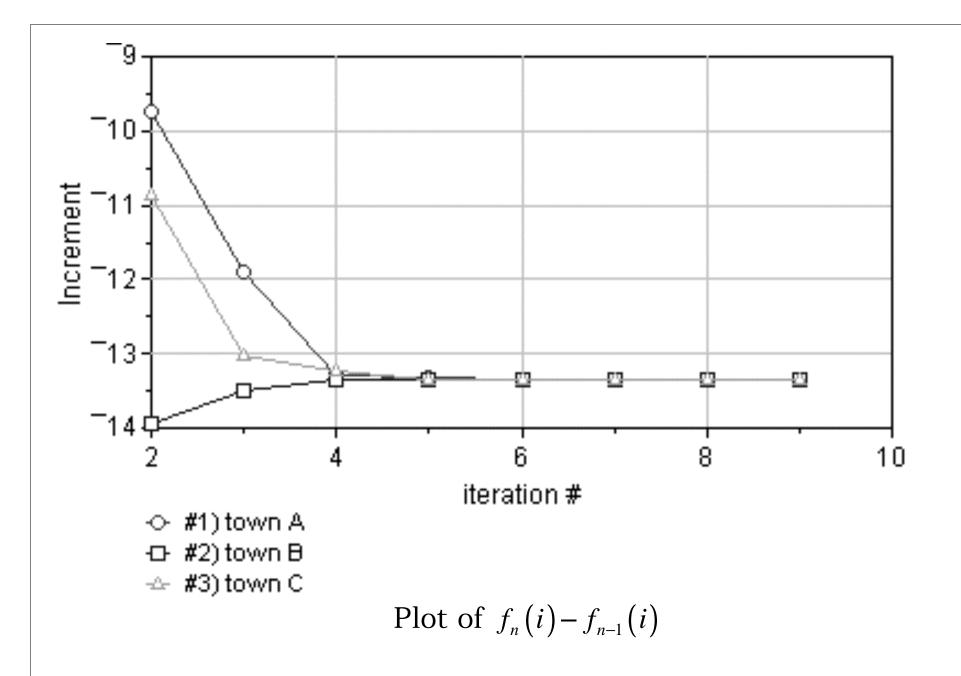
Minimizing average cost/period

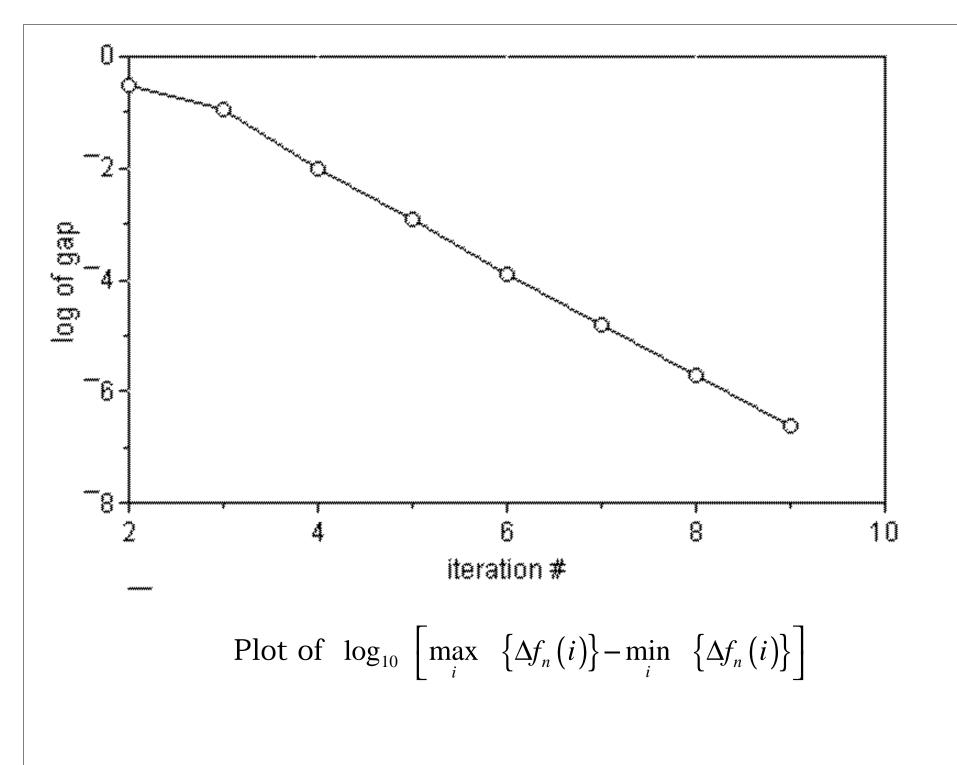
iteration	Max ΔV	Min $\Delta extsf{V}$	gap (%)
1	⁻ 9.75000E0	⁻ 1.39375E1	3.00448E1
2	⁻ 1.19141E1	⁻ 1.34844E1	1.16454E1
3	⁻ 1.32314E1	⁻ 1.33579E1	$9.46741E^{-1}$
4	⁻ 1.33307E1	⁻ 1.33465E1	$1.18444E^{-1}$
5	⁻ 1.33431E1	⁻ 1.33448E1	1.27635E ⁻ 2
б	⁻ 1.33444E1	⁻ 1.33446E1	1.59546E ⁻ 3
7	⁻ 1.33445E1	⁻ 1.33445E1	$1.91449E^{-}4$
8	⁻ 1.33445E1	⁻ 1.33445E1	2.39312E ⁻ 5

***Converged! with gap = 0.0000239312%

Solution:

	state	action	Value
_	1	2	$^{-}13.3445$
	2	2	$^{-}13.3445$
	3	2	$^{-}13.3445$





Next we will solve the problem with the objective of maximizing the total discounted payoff.

Criterion: Discounted Total Cost, with $\beta = (1.2)^{-1} = 0.833333$

k: i:	1 1	2 1	3 1	1 2	2 2	1 3	2 3	3 3	RHS
Min	-8	$^{-}2.75$	-4.25	-16	-15	-7	-4	-4.5	0
	0.583	0.948	0.792	-0.417	-0.052	-0.208	-0.104	-0.625	1
	-0.208	-0.625	-0.104	1	0.271	-0.208	-0.625	-0.052	0
	-0.208	-0.156	-0.521	$^{-}0.417$	-0.052	0.583	0.895	0.843	0

Note: Specifying initial conditions to be deterministic, with town A as initial state

$$\begin{aligned} \text{Minimize} \sum_{i} \sum_{a \in A_{i}} C_{i}^{a} X_{i}^{a} \\ \text{subject to} \quad \sum_{a \in A_{j}} X_{j}^{a} &= b \sum_{i} \sum_{a \in A_{i}} P_{ij}^{a} X_{i}^{a} \quad \forall j \\ X_{i}^{a} &\geq 0 \quad \forall a \in A_{i}, \forall i \end{aligned}$$

Note that X_i^a is **not a probability** in this model, and so the equation

$$\sum_{i} \sum_{a} X_{i}^{a} = 1$$

is **not** included in the LP tableau.

There is **one equation for each state** (not including the objective row), with no redundancy as in the average cost/stage LP model, so the total number of variables, as before, is equal to the number of states, and as before, in a basic feasible solution there is **one basic variable per state**.

Phase One procedure was used to find initial basic feasible solution

Iteration 0

Policy: (Cost= -50.12)

State		Action				X{i]	}	V{:	i}	
1)	town A	1)	CI	RUISE		3.	783	- [$^{-}50.12$	
2)	town B	1)	CI	RUISE		0.8	3589	- [56.01	
3)	town C	3)	RADIO CALL		1.358		- 4	45.91		
k:	1 2	3	1	2		1	2	3		
i:	1 1	1	2	2		3	3	3	rhs	
Min	0 2.574	5.677	0	-4.831	-2.	327	-3.097	0	50.12	
	1 1.361	1.151	0	0.4107	0.	3612	0.5118	B 0	3.783	
	0 -0.3425	0.1215	1	0.3679	-0.	09487	-0.4685	50	0.8589	
	0 -0.0183	1 - 0.273	0	0.2214	0.	7337	0.956	7 1	1.358	

i~state, k~action

Policy: (Cost = -61.4)V{i} X{i} State Action 1) town A 1) CRUISE 2.824 $^{-}61.4$ $^{-}77.89$ 2) town B 2) TAXISTAND 2.334 3) town C 3) $^{-55.62}$ RADIO CALL 0.8414 3 2 1 2 1 2 3 1 k: 3 i: 1 1 1 2 2 3 3 rhs Min 0 -1.923 7.273 13.13 0 -3.573 -9.249 0 61.4 1 1.743 1.016 -1.116 0 0.4671 1.035 0 2.824 0 -0.9308 0.3302 2.718 1 -0.2579 -1.273 0 2.334 0 0.1877 -0.3461 -0.6017 0 0.7908 1.239 1 0.8414 i~state, k~action

Policy: (Cost = -67.68)V{i} $X\{i\}$ State Action 1) 1) CRUISE 2.121 -67.68 town A 2) 2) TAXISTAND 3.199 $^{-81.74}$ town B 3) 2) 0.6793 -69.36 town C TAXISTAND 2 3 2 3 k: 1 1 1 2 i: 1 2 2 3 3 3 1 1 rhs Min $^{-0.5206}$ 4.689 8.638 0 2.332 0 7.467 67.68 0 1 1.586 1.305 -0.6136 0 -0.1936 0 -0.8355 2.121 0 -0.7378 -0.02557 2.099 1 0.5551 0 1.028 3.199 0 0.1516 -0.2794 -0.4858 0 0.6384 1 0.8073 0.6793

i~state, k~action

Policy: (Cost = -68.37)

	000 00	• • • •	•						
S	tate	Action			X{i}		V{i}		
1) t	own A	2)) TZ	AXISTAND		1.33	1.337		.37
2) t	own B	2)	T_{z}	AXISTAND		4.180	5	-81	.91
3) town C		2)	2) TAXISTAND			0.4766		69	.56
, I								·	
k:	1	2	3	1	2	1	2	3	
i:	1	1	1	2	2	3	3	3	rhs
Min	0.3282	0 1	5.117 0.8227	8.437 ⁻ 0.3868	0 0	2.269 -0.122	0 0	7.193 ⁻ 0.5267	68.37 1.337
	0.4651	0	0.5814	1.814	1	0.4651	-	0.6395	4.186
	-0.09556	60-	0.4041	$^{-}0.4271$	0	0.6569	1	0.8872	0.4766

i~state, k~action

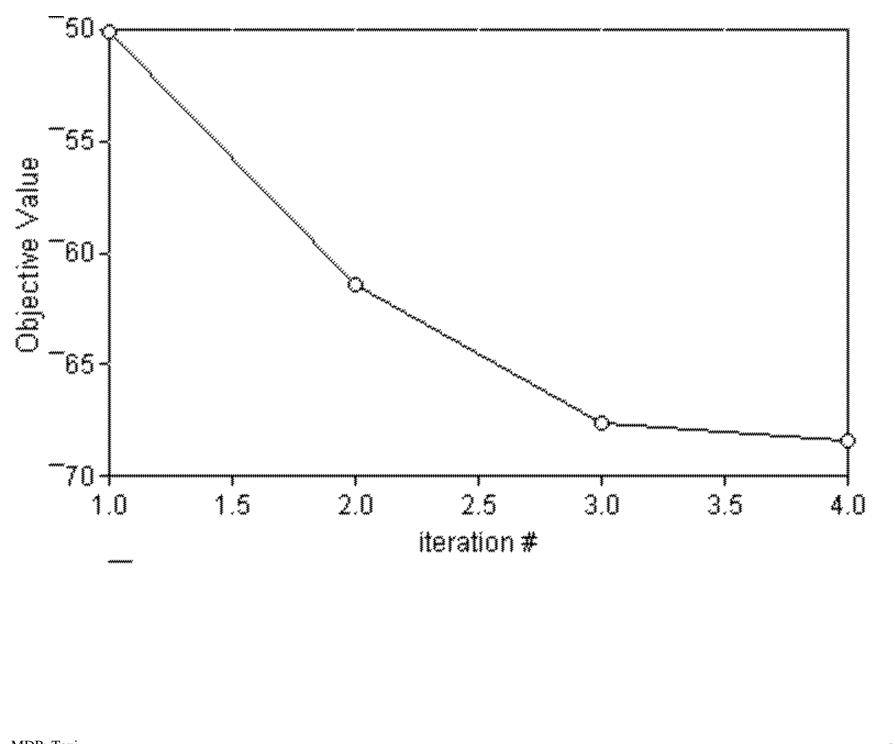
Reduced costs are now nonnegative!

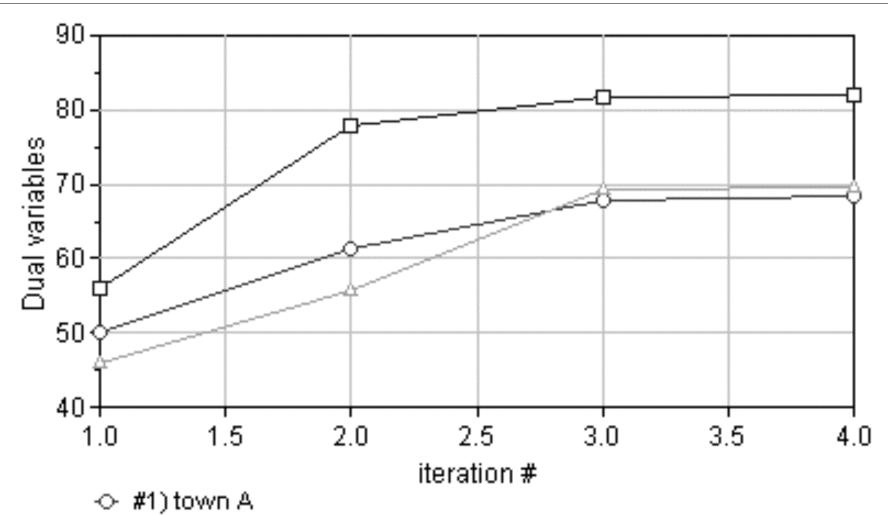
Optimal Policy

_	State	Action	X{i}	V{i}	alpha{i}
1)	town A	2) TAXISTAND	1.337	68.37	1
2)	town B	2) TAXISTAND	4.186	-81.91	0
3)	town C	2) TAXISTAND	0.4766	-69.56	0

Alpha is initial distribution of the state

Discounted future costs = -68.37





- 다 #2) town B
- 🕁 **#**3) town C

Value Iteration Method

Tolerance: 1.00E⁻6

Minimizing discounted future costs

iteration	Max $\Delta ext{V}$	Min $\Delta extsf{V}$	gap (%)
1	⁻ 8.12500E0	⁻ 1.14479E1	2.90264E1
2	⁻ 7.55425E0	⁻ 9.21658E0	1.80363E1
3	⁻ 7.04056E0	⁻ 7.57706E0	7.08063E0
4	⁻ 6.24756E0	⁻ 6.28089E0	5.30648E ⁻ 1
5	⁻ 5.22831E0	⁻ 5.23178E0	6.63601E ⁻ 2
6	⁻ 4.35921E0	⁻ 4.35951E0	6.89203E ⁻ 3
7	⁻ 3.63287E0	⁻ 3.63290E0	8.61510E ⁻ 4
8	⁻ 3.02741E0	-3.02741E0	1.02206E ⁻ 4
9	⁻ 2.52284E0	⁻ 2.52284E0	$1.27758E^{-}5$

***Converged! with gap = 0.00001278%

Solution:

state	action	Value
1	2	-55.76
2	2	-69.30
3	2	⁻ 56.95

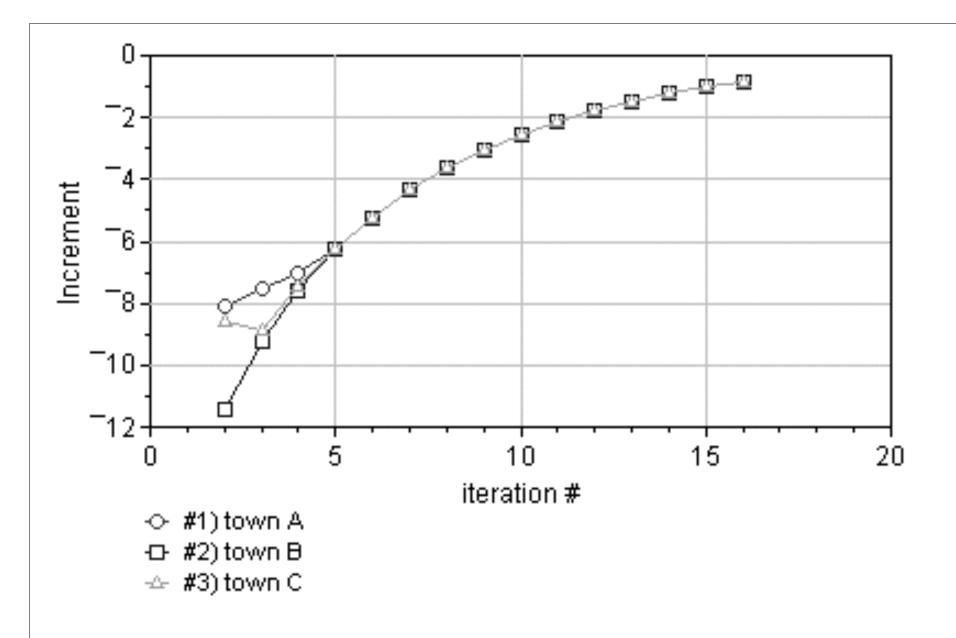
Solving ag	gain		
Tolerance	1.00E ⁻ 12	Reduced the t	olerance!
iteration	Max ΔV	Min ΔV	gap (%)
1	⁻ 8.12500E0	⁻ 1.14479E1	2.90264E1
2	⁻ 7.55425E0	⁻ 9.21658E0	1.80363E1
3	⁻ 7.04056E0	⁻ 7.57706E0	7.08063E0
4	⁻ 6.24756E0	⁻ 6.28089E0	5.30648E ⁻ 1
5	⁻ 5.22831E0	⁻ 5.23178E0	6.63601E ⁻ 2
б	⁻ 4.35921E0	⁻ 4.35951E0	6.89203E ⁻ 3
7	⁻ 3.63287E0	⁻ 3.63290E0	8.61510E ⁻ 4
8	⁻ 3.02741E0	⁻ 3.02741E0	$1.02206E^{-}4$
9	⁻ 2.52284E0	⁻ 2.52284E0	$1.27758E^{-}5$
10	⁻ 2.10237E0	⁻ 2.10237E0	1.57556E ⁻ 6
11	⁻ 1.75198E0	⁻ 1.75198E0	1.96944E ⁻ 7
12	⁻ 1.45998E0	⁻ 1.45998E0	2.45345E ⁻ 8
13	⁻ 1.21665E0	⁻ 1.21665E0	3.06725E ⁻ 9
14	⁻ 1.01387E0	⁻ 1.01387E0	3.82647E ⁻ 10
15	⁻ 8.44896E ⁻ 1	⁻ 8.44896E ⁻ 1	4.79360E ⁻ 11

***Converged! with gap = 4.794E⁻11%

Solution:

state	action	Value
1	2	⁻ 64.15
2	2	⁻ 77.69
3	2	-65.34

Note: Policy is same as the earlier run with larger tolerance, but objective value is nearer to true value.



Because the duration (in minutes) of a stage (trip) will depend upon the policy which we select,

the objective of maximizing the reward per trip is inappropriate--

we should instead maximize the **reward per unit time**.

This requires that we treat this as a

Semi-Markov Decision Process (SMDP).

Suppose we have the additional data: Expected time to obtain passenger:

 W_i^k = expected waiting time (minutes) in town *i* when action *k* is selected

Town \ Action	Cruising	Taxi stand	Dispatch call
Α	15	20	20
B	10	25	∞
С	20	25	20

Expected travel time between towns:

 T_{ij} = expected travel time (minutes) from town *i* to town *j*

Town \ Town	Α	B	С
Α	10	20	30
B	20	10	20
С	30	20	10

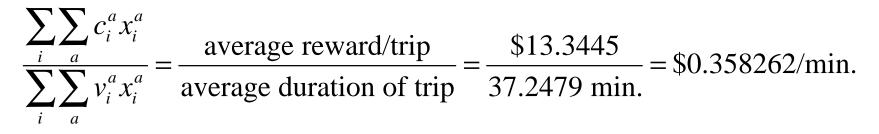
Expected travel time (minutes) of trip = $\sum_{i} P_{ij}^{k} T_{ij}$ =

	Cruise	Taxi-stand	Radio call
town A town B town C	17.5	21.25	23.75
town B	20	11.25	10
town C	17.5	20	25.625

 $v_i^a \triangleq E[t_i^a] = \text{expected total duration of a trip (waiting + traveling)}$ when in town *i* if action *a* is selected, i.e., $E[t_i^k] = W_i^k + \sum_i P_{ij}^k T_{ij} =$

	Cruise	Taxi-stand	Radio call
town A	32.5	41.25	43.75
town B	30	36.25	0
town C	37.5	45	45.625

Average reward per minute for the optimal policy (2,2,2) found by the MDP:



If we treat this as a Semi-Markov Decision Process (**SMDP**), then we can find the policy which maximizes our reward per minute by solving the LP:

Minimize
$$\sum_{i} \sum_{a} c_{i}^{a} u_{i}^{a}$$

subject to $\sum_{j} u_{j}^{a} = \sum_{i} \sum_{a} p_{ij}^{a} u_{i}^{a}$ for all states j
 $\sum_{i} \sum_{a} v_{i}^{a} u_{i}^{a} = 1$
 $u_{i}^{a} \ge 0$ for all states i and actions $a \in A_{i}$

k:	1	2	3	1	2	1	2	3	
<u>i:</u>	1	1	1	2	2	3	3	3	RHS
Min	-8	$^{-}2.75$	$^{-}4.25$	-16	-15	-7	-4	-4.5	0
	0.5	0.9375	0.75	-0.5	-0.0625	-0.25	-0.125	⁻ 0.75	0
	-0.25	5 ⁻ 0.75	$^{-}0.125$	1	0.125	-0.25	$^{-}0.75$	-0.0625	0
	32.5	41.25	43.75	30	36.25	37.5	45	45.625	1

Note that this tableau differs from that of the LP for MDP only in the **last row**!

Optimal Policy:

State		Action		U{i}
1)	town A	1)	CRUISE	0.00331263
2)	town B	2)	TAXISTAND	0.0215321
3)	town C	2)	TAXISTAND	0.00248447

Average cost/unit time = -0.35942

The optimal policy (1,2,2) of the SMDP is different in town A, and the average reward per minute is slightly larger (\$0.35942) than that (\$0.358262) of the earlier policy (2,2,2).

In reality, of course, the infinite horizon is a much more problematic assumption in this particular problem!)