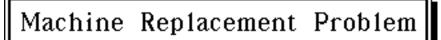


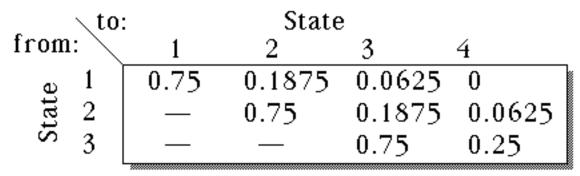
Machine Replacement Problem

At the beginning of each month, a machine is inspected and classified as:

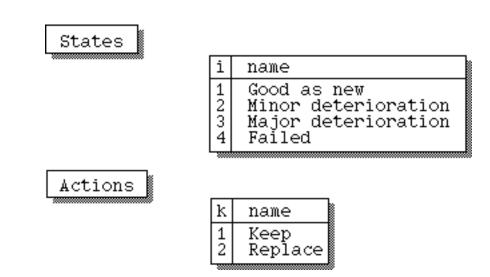
- 1) Good as new
- 2) Operable, with minor deterioration
- 3) Operable, with major deterioration
- 4) Inoperable


After determining the state of the machine, a decision must be made:

- 1) Keep the machine another month
- 2) Replace the machine with a new machine


Machine Replacement Problem

```
A replacement machine costs $3000,
minus trade-in value:
$1000 if in state 2
500 if in state 3
0 if in state 4
Monthly operating costs are $100, $200, and
$500 for a machine in states 1, 2, & 3,
```

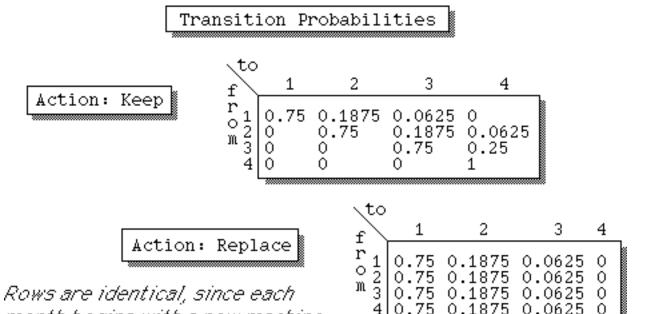

respectively.

Survival probabilities

What is the optimal replacement policy?

@D. Bricker,U. of Iowa, 1998

page 7


Cost Matrix

k	name	1	2	3	4
1	Keep	100	200	500	9999
2	Replace	9999	2100	2600	3100

(Rows ~ actions, Columns ~ states)

A value of 9999 above signals an infeasible action in a state.

(includes cost of operating the new machine, if decision is to replace)

month begins with a new machine, regardless of current condition

🕼 Linear Programming Approach

Policy Iteration Method

Linear Programming Model

What is the policy which minimizes the average cost/month in steady state?

Minimize $\sum_{i=1}^{N} \mathbf{C}_{i}^{k} \mathbf{X}_{i}^{k}$

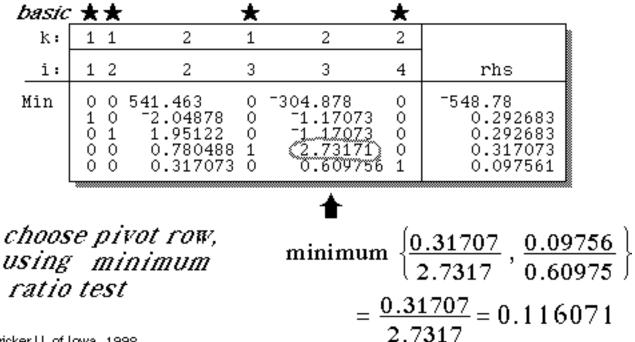
where

X^k_i = probability that machine is in state #i and decision #k is selected <ு

					L	P Table	au
k:	1	1	2	1	2	2	R
i:	1	2	2	3	3	4	R H S
Min	100 0.25 -0.1875 -0.0625 1	0 0.25	-0.75 0.8125	500 0 0.25 1	-0.75 -0.1875	3100 -0.75 -0.1875 -0.0625 1	0 0 0 1

X^k_i = probability that machine is in state #i and decision #k is selected

	ation	0	In	the mac	•	r: keep until ne fails
basic	<u>**</u>		*		*	,
k:	1 1	2	1	2	2	
_i:	12	2	3	3	4	rhs
Min	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$		0 0 1 0	^{-304.878} ^{-1.17073} ^{-1.17073} 2.73171 0.609756	0 0 0 1	-548.78 0.292683 0.292683 0.317073 0.097561
i∼st	ate,	k~action			ą o.	s is obtained by ne basic variable 'ate.


Steadystate distribution resulting from this policy

Iteration 0

Policy: (Cost= 548.78)

		1
State	Action	P{i}
1 Good as new 2 Minor deterioration 3 Major deterioration 4 Failed	1 Keep 1 Keep 1 Keep 2 Replace	0.292683 0.292683 0.317073 0.097561

Choose a column having negative reduced cost, and enter it into the basis:

Iteration 1

	**			*	*	
k:	1 1	2	1	2	2	
i:	12	2	3	3	4	rhs
Min	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	628.571 -1.71429 2.28571 0.285714 0.142857	111.607 0.428571 0.428571 0.366071 -0.223214	0 0 0 1 0	0 0 0 1	^{-513.393} 0.428571 0.428571 0.428571 0.116071 0.0267857

i~state, k~action

X_3^2 has replaced X_3^1 in the basis

Iteration 1

Policy: (Cost= 513.393)

State	Action	P{i}
1 Good as new	1 Keep	0.428571
2 Minor deterioration	1 Keep	0.428571
3 Major deterioration	2 Replace	0.116071
4 Failed	2 Replace	0.0267857

	**			*	*	
k:	1 1	2	1	2	2	
i:	12	2	3	3	4	rhs
Min	$\begin{smallmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{smallmatrix}$	628.571 -1.71429 2.28571 0.285714 0.142857	111.607 0.428571 0.428571 0.366071 -0.223214	0 0 0 1 0	0 0 0 1	-513.393 0.428571 0.428571 0.116071 0.0267857

i~state, k~action

Reduced costs are nonnegative... the optimality condition is satisfied/

page 18

Optimal Policy

State	Action
1 Good as new	1 Keep
2 Minor deterioration	1 Keep
3 Major deterioration	2 Replace
4 Failed	2 Replace

K⊅

Policy Iteration Method

🕼 Average cost per month

Present value of all future costs

page 20

Machine Replacement Example

State	Action
1 Good as new	1 Keep
2 Minor deterioration	1 Keep
3 Major deterioration	1 Keep
4 Failed	2 Replace

ረጋ

Policy Improvement Step: Evaluation of alternate actions

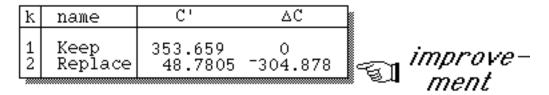
State #2, Minor deterioration

Current Policy: action #1, Keep

g(R)+Vi(R) = -992.683

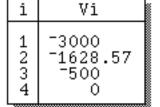
k	name	C'	ΔC
1	Keep	-992.683	0
2	Replace	-451.22	541.463

no improvement can be achieved by changing action in this state.


C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

Policy Improvement Step: Evaluation of alternate actions

State #3, Major deterioration


Current Policy: action #1, Keep

g(R) + Vi(R) = 353.659

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

State	Action		
1 Good as new 2 Minor deterioration 3 Major deterioration 4 Failed	1 Keep 1 Keep 2 Replace 2 Replace	T	new policy
Value Determinatio	20		

Policy Improvement Step: Evaluation of alternate actions

State #2, Minor deterioration

Current Policy: action #1, Keep

g(R) + Vi(R) = -1115.18

k	name	C'	ΔC
12	Keep	⁻ 1115.18	0
	Replace	-486.607	628.571

no improvement can be achieved by changing action in this state.

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Policy Improvement Step: Evaluation of alternate actions

State #3, Major deterioration

Current Policy: action #2, Replace g(R)+Vi(R) = 13.3929

k	name	C'	ΔC
1	Keep	125	111.607
2	Replace	13.3929	0

no improvement can be achieved by changing action in this state.

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

K⊅

The current policy is optimal!

Minimizing: Present value of all future costs i.e., MDP with discounting is used.

Assume a rate of return of 1.5% per month (18% per year)

$$\beta = \frac{1}{1+r} = \frac{1}{1.015} = 0.985222$$

That is, the present value of a \$1 cost next month is \$0.985222

$\langle \mathcal{I} \rangle$

Let's begin with an initial policy: keep machine until it fails i.e., R = (1, 1, 1, 2)

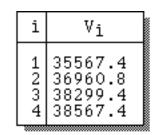
State		Action
1	Good as new	1 Keep
2	Minor deterioration	1 Keep
3	Major deterioration	1 Keep
4	Failed	2 Replace

Discount factor = 0.985222 (rate of return = 1.5%)

page 28

Value Determination

Solve the system of equations: $\mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + \beta \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j(R) \quad \forall \ i \in S$


$$P^{R} = \begin{bmatrix} 0.75 & 0.1875 & 0.0625 & 0 \\ 0 & 0.75 & 0.1875 & 0.0625 \\ 0 & 0 & 0.75 & 0.25 \\ 0.75 & 0.1875 & 0.0625 & 0 \end{bmatrix}$$
$$\mathbf{v}_{i}(R) = \mathbf{C}_{i}^{k_{i}} + \beta \sum_{j \in S} p_{ij}^{k_{i}} \mathbf{v}_{j}(R) \quad \forall \ i \in S$$

$$\mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + \beta \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j(R) \quad \forall i \in S$$

$$\begin{cases} \mathbf{v}_1 = \mathbf{100} + \mathbf{0.98522} \left(\mathbf{0.75v}_1 + \mathbf{0.1875v}_2 + \mathbf{0.0625v}_3 \right) \\ \mathbf{v}_2 = \mathbf{200} + \mathbf{0.98522} \left(\mathbf{0.75v}_2 + \mathbf{0.1875v}_3 + \mathbf{0.0625v}_4 \right) \\ \mathbf{v}_3 = \mathbf{500} + \mathbf{0.98522} \left(\mathbf{0.75v}_3 + \mathbf{0.25v}_4 \right) \\ \mathbf{v}_4 = \mathbf{3100} + \mathbf{0.98522} \left(\mathbf{0.75v}_1 + \mathbf{0.1875v}_2 + \mathbf{0.0625v}_3 \right) \end{cases}$$

Solution:

i	Vi	
1234	35567.4 36960.8 38299.4 38567.4	

That is, \$35,567.40 invested at 1.5% per month interest would sufficient to pay all future operation and replacement cost for the machine, if it is initially in state 1, i.e., "good as new"

page 32

Policy Improvement

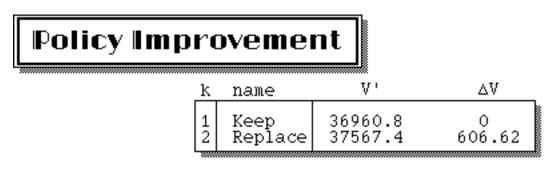
Policy Improvement Step: Evaluation of alternate actions

State #2, Minor deterioration

Current Policy: action #1, Keep

Evaluate alternative action: #2, Replace

$$v'_{i} = C_{i}^{k'_{i}} + \beta \sum_{j} p_{ij}^{k'_{i}} v_{j}$$
 i=2, k'_{i} =2


1 2 3

Vi		
35567.4 36960.8 38299.4 38567.4	$\mathbf{v}'_i = \mathbf{C}_i^{k'_i} + \beta \sum_j \mathbf{p}_{ij}^{k'_i} \mathbf{v}_j$	i=2, k ' =2

$$\begin{split} \mathbf{v}_2' &= 2100 + 0.98522 \left(0.75 \mathbf{v}_1 + 0.1875 \mathbf{v}_2 + 0.675 \mathbf{v}_3 \right) \\ &= 2100 + 0.98522 \left(0.75 \!\times\!\! 35567.4 + 0.1875 \!\times\!\! 36960.8 \right. \\ &\quad + 0.0625 \!\times\!\! 38299.4 \Big) \end{split}$$

= 37567.40

That is, if we are initially in state 2 and replace the machine, but thereafter follow the original policy R, the present value of all future costs is \$27,567.40

V'(k) = total discounted cost if action k is selected for one stage, & current policy is followed thereafter

 $\Delta V(k) = improvement (if <0)$

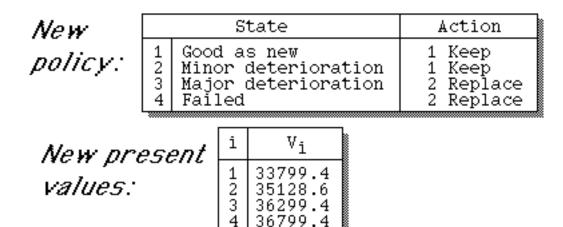
Since $v'_2 > v_2$, the current policy for this state should not be changed.

Policy Improvement

State #3, Major deterioration

Current Policy: action #1, Keep

Evaluate the alternate action: Replace


k	name	۷'	ΔV
1	Keep	38299.4	0
2	Replace	38067.4	-232.035

Since $v'_3 < v_3$, i.e., $\Delta v_3 = v'_3 - v_3 < 0$, the policy in this state should be changed to "replace"

page 36

Value Determination

Discount factor = 0.985222 (rate of return = 1.5%)

Policy Improvement

State #2, Minor deterioration

Current Policy: action #1, Keep

k	name	۷'	ΔV
1	Keep	35128.6	0
	Replace	35799.4	670.718

V'(k) = total discounted cost if action k is selected for one stage, & current policy is followed thereafter ∆V(k) = improvement (if <0)</pre>

The policy for this state should not be changed.

page 38

Policy Improvement

State #3, Major deterioration

Current Policy: action #2, Replace

k	name	Υ'	ΔV
1	Keep	36386.1	86.709
2	Replace	36299.4	0

V'(k) = total discounted cost if action k is selected for one stage, & current policy is followed thereafter ΔV(k) = improvement (if <0)</pre>

The policy for this state should not be changed.

No improvement is possible, so the current policy:

	State		Action	
1	Good as new	1	Keep	
2	Minor deterioration	1	Keep	
3	Major deterioration	2	Replace	
4	Failed	2	Replace	

is optimal!

K⊅