

Production Planning Problem

@D. Bricker, U. of Iowa, 1998

	[states]	
i	states	
1 2 3 4	Inventory= Inventory= Inventory= Inventory=	0 1 2 3

Ctataa

(Rows ~ actions, Columns ~ states)

GD. Bricker, U. of Iowa, 1998

i~state, k~action

<u>k:</u>	1	2	3	1	2	3	1	2	3	1	2	3	R
i:	1	1	1	2	2	2	3	3	3	4	4	4	н S
Min	38	32	25	14	22	27	3	23	28	4	24	29	
	0	0.2	0.7	-0.8 0.8	-0.3	07	-0.3	0	0	0	0	0	0
	ŏ	ŏ.2	-ŏ.2	ļ č.	-ŏ.2	ו••	V.J	0.5	ŏ.7	-0.5	-ŏ.3	ŏ	ŏ
		1	1	1	1	1	1	1	1	1	1	1	1

@D. Bricker, U. of Iowa, 1998

Policy: (Cost= 21.42)

State			Action	P{i}	
1 Inventory= 2 Inventory= 3 Inventory= 4 Inventory=	= 1 = 2	2	Produce Produce Produce Produce Produce	2 1 1 0	0.18 0.42 0.32 0.08

Initial policy (basic feasible solution): produce a quantity sufficient to replace any units which were removed from inventory

GD. Bricker, U. of Iowa, 1998

Iteration 1

Policy: (Cost= 19.1)

Stat	e			Action	P{i}	
1 Invent 2 Invent 3 Invent 4 Invent	lory= lory=	0 1 2 3	2	Produce Produce Produce Produce	2 1 0	0.3 0.5 0.2 0

@D. Bricker, U. of Iowa, 1998

Iteration 2

Optimal Policy: (Cost= 16)

	State			Action	P{i}	
2 I: 3 I:	nventory= nventory= nventory= nventory=	0 1 2 3	3 3 1 1	Produce Produce Produce Produce	2 2 0 0	0.15 0.4 0.35 0.1

Optimal policy: If inventory level is less than 2, produce a quantity sufficient to fill the inventory to its capacity

GD. Bricker, U. of Iowa, 1998