

Policy-Iteration Algorithm without Discounting

Optimizes the "average", i.e., expected, cost or return per period in steady state.

Policy-Iteration Algorithm with Discounting

Optimizes the present value of all future expected costs

Policy-Iteration Algorithm without Discounting

For each policy R=(k₁,k₂, ... k_n), define

$$\pi^R = (\pi_1^R, \pi_2^R, \dots \pi_n^R)$$
 to be the steady state distribution using policy R

 $\mathbf{g}(\mathbf{R}) = \sum_{i \in S} \pi_i^{\mathbf{R}} \mathbf{C}_i^{\mathbf{k}_i}$ to be the expected cost per stage (in steady state) if policy R is used.

vⁿ_i(R) = total expected cost during the next n stages if the system starts in state i & follows policy R

$$\mathbf{v}_i^n(R) = \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j^{n-1}(R)$$

For "large" n, $\mathbf{v}_i^n(R) \approx \; n \; g(R) + \; \mathbf{v}_i(R)$

where

 $\mathbf{v}_i(R)$ = effect on total expected cost (to ∞) due to the system's starting in state i

$$\mathbf{g}(R) + \mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j(R) \quad \forall i \in S$$

Given a policy R, this will be a system of n linear equations with n+1 unknowns, i.e.,

$$g(R),\, v_1(R),\, v_2(R),\, \ldots \, v_n(R)$$

To find a solution, therefore, we may assign an arbitrary value (usually zero) to one of the unknowns $\mathbf{v}_i(\mathbf{R})$, say $\mathbf{v}_n(\mathbf{R})$

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R.

Step 1: **Value Determination** Solve the system of linear equations $\mathbf{g}(\mathbf{R}) + \mathbf{v}_i(\mathbf{R}) = \mathbf{C}_i^{k_i} + \sum_{j \in \mathbf{S}} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j(\mathbf{R}) \quad \forall i \in \mathbf{S}$ for $\mathbf{g}(\mathbf{R}), \mathbf{v}_1(\mathbf{R}), \mathbf{v}_2(\mathbf{R}), \dots \mathbf{v}_{n-1}(\mathbf{R}),$ letting $\mathbf{v}_n(\mathbf{R}) = 0$

Policy-Iteration Algorithm

Step 2: **Policy Improvement** Find an improved policy R' such that $R' = (k'_1, k'_2, \dots k'_n)$ and

$$C_i^{k'_i} + \sum_j p_{ij}^{k'_i} v_j(R) \le g(R) + v_i(R) \quad \forall i \in S$$

with strict inequality for at least one state i.
If no such improved policy exists, stop;
otherwise, return to step 1.

$$\underbrace{\mathbf{C}_{i}^{k'_{i}} + \sum_{j} \mathbf{p}_{ij}^{k'_{i}} \mathbf{v}_{j}(R)}_{j} \leq \mathbf{g}(R) + \mathbf{v}_{i}(R) \quad \forall i \in S$$

expected cost if at stage 1 we take action k_i, and then follow policy R.

expected cost if, beginning at stage 1, we follow policy R

State		Action
1 Town A 2 Town B 3 Town C	1 Cruise 1 Cruise 1 Cruise	
g(R) = ⁻ 9.2	i	Vi
	1 2 3	-1.33333 -7.46667 0

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise g(R)+Vi(R) = -10.5333

k	name	C'	ΔC
1	Cruise	-10.5333	0
2	Cabstand	-8.43333	2.1
3	Wait for cal	1 -5.51667	5.01667

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Υ

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #1, Cruise g(R)+Vi(R) = -16.6667

k	name	C'	ΔC
12	Cruise	⁻ 16.6667	0
	Cabstand	-21.6167	-4.95

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #1, Cruise g(R)+Vi(R) = -9.2

k	name	C'	ΔC
1	Cruise	-9.2	0
2	Cabstand	-9.76667	-0.566667
3	Wait for call	-5.96667	3.23333

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

State	Action	
1 Town A	1 Cruise	
2 Town B	2 Cabstand	
3 Town C	2 Cabstand	

g(R) = 713.1515	i	Vi
	1 2 3	3.87879 -12.8485 0

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise g(R)+Vi(R) = -9.27273

k	name		C'	ΔC
1	Cruise	call	-9.27273	0
2	Cabstand		-12.1439	-2.87121
3	Wait for		-4.88636	4.38636

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #2, Cabstand

g(R) + Vi(R) = -26

k	name	C'	ΔC
1	Cruise	-14.0606	11.9394
	Cabstand	-26	0

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand g(R)+Vi(R) = -13.1515

k	name		C'	ΔC
1 2 3	Cruise Cabstand Wait for	call	-9.24242 -13.1515 -2.39394	3.90909 0 10.7576

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

State	Action
1 Town A	2 Cabstand
2 Town B	2 Cabstand
3 Town C	2 Cabstand

$$g(R) = -13.3445$$

i	Vi	
1 2 3	1.17647 -12.6555 0	
		8

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #2, Cabstand g(R)+Vi(R) = -12.1681

k	name	C'	ΔC
1	Cruise	-10.5756	1.59244
2	Cabstand	-12.1681	0
3	Wait for ca	-5.53782	6.63025

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #2, Cabstand g(R)+Vi(R) = -26

k	name	C'	ΔC
1	Cruise	-15.4118	10.5882
2	Cabstand	-26	0

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand g(R)+Vi(R) = -13.3445

k	name		C'	ΔC
1	Cruise	call	-9.86975	3.47479
2	Cabstand		-13.3445	0
3	Wait for		-4.40861	8.93592

C'[k] = cost if action k is selected for one stage $<math>\Delta C[k] = improvement (if < 0)$

Policy-Iteration Algorithm with Discounting

Define β = discount factor = $\frac{1}{1+r}$ where \mathbf{r} = rate of return per stage $\mathbf{v}_i(\mathbf{R})$ = **Present Value** of all future expected costs, if policy **R** is followed, starting in state \mathbf{i}

ŝ

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R.

Step 1: Walue Determination

 $\begin{array}{ll} \text{Solve the system of linear equations} \\ \mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + & \beta \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j(R) & \forall \ i \in S \\ \text{for} & \mathbf{v}_1(R), \, \mathbf{v}_2(R), \, \dots \, \mathbf{v}_n(R) \end{array}$

Policy-Iteration Algorithm

Step 2: **Policy Improvement** Find an improved policy R' such that $\mathbf{R'} = (\mathbf{k'}_1, \, \mathbf{k'}_2, \, \dots \, \mathbf{k'}_n)$ and