

Markov Decision Problem

Linear Programming Method

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

Linear Programming Algorithm without Discounting

Optimizes the "average", i.e., expected, cost
or return per period in steady state.

Linear Programming Algorithm with Discounting

Optimizes the present value of all future
expected costs

LP model of MDP

Assume that, using the optimal policy, a steady state distribution exists.

Define "randomized" or "mixed" strategies:

X_i^k = joint probability, in steady state, of being in state i and selecting action $k \in K_i$

LP Model

$$\text{Maximize} \quad \sum_{i \in S} \sum_{k \in K_i} C_i^k X_i^k$$

$$\sum_{k \in K_j} X_j^k = \sum_{i \in S} \sum_{k \in K_i} p_{ij}^k X_i^k \quad \forall j \in S$$

$$\sum_{i \in S} \sum_{k \in K_i} X_i^k = 1$$

$$X_i^k \geq 0$$

*One constraint
is redundant,
and can be
eliminated.*

Transition Probabilities

Action: Cruise

		to		
		1	2	3
f	1	0.5	0.25	0.25
	2	0.5	0	0.5
	3	0.25	0.25	0.5

Taxi Problem

Action: Cabstand

		to		
		1	2	3
f	1	0.0625	0.75	0.1875
	2	0.0625	0.875	0.0625
	3	0.125	0.75	0.125

Action: Wait for call

		to		
		1	2	3
f	1	0.25	0.125	0.625
	2	0	1	0
	3	0.75	0.0625	0.1875

Taxi Problem

Cost Matrix

k	name	1	2	3
1	Cruise	-8	-16	-7
2	Cabstand	-2.75	-15	-4
3	Wait for call	-4.25	999	-4.5

(Rows ~ actions, Columns ~ states)

A value of 999 above signals
an infeasible action in a state.

*Expected returns
for each $i \& k$*

LP Tableau

Taxi
Problem

k:	1	2	3	1	2	1	2	3	R
i:	1	1	1	2	2	3	3	3	H
Min	-8	-2.75	-4.25	-16	-15	-7	-4	-4.5	S
	0.5	0.9375	0.75	-0.5	-0.0625	-0.25	-0.125	-0.75	0
	-0.25	-0.75	-0.125	1	0.125	-0.25	-0.75	-0.0625	0
	1	1	1	1	1	1	1	1	1

Iteration 0

LP Tableau

Initial basic feasible solution

basic: ★

★ ★

k:	1	2	3	1	2	1	2	3	R
i:	1	1	1	2	2	3	3	3	H
Min	0	2.1	5.016667	0	-4.95	0	-0.566667	3.233333	9.2
	1	1.45	1.366667	0	0.35	0	0.03333333	-0.616667	0.4
	0	-0.4	0.1	1	0.3	0	-0.4	0.15	0.2
	0	-0.05	-0.466667	0	0.35	1	1.366667	1.466667	0.4

Initial policy: in each city, select "cruise"
("greedy" policy)

Iteration 0

Policy: (Cost= -9.2)

initial
basic
solution

$$\begin{cases} X_1^1 = 0.4 \\ X_2^1 = 0.2 \\ X_3^1 = 0.4 \end{cases}$$

State	Action	$P\{i\}$
1 Town A	1 Cruise	0.4
2 Town B	1 Cruise	0.2
3 Town C	1 Cruise	0.4

Initial policy: in each city, select "cruise" ("greedy" policy)

Iteration 0

LP Tableau

basic: ★

★

★

k:	1	2	3	1	2	1	2	3	R
i:	1	1	1	2	2	3	3	3	H
Min	0	2.1	5.016667	0	-4.95	0	-0.566667	3.233333	9.2
	1	1.45	1.366667	0	0.35	0	0.03333333	-0.616667	0.4
	0	-0.4	0.1	1	0.3	0	-0.4	0.15	0.2
	0	-0.05	-0.466667	0	0.35	1	1.36667	1.46667	0.4

minimum $\left\{ \frac{0.4}{0.35}, \frac{0.2}{0.3}, \frac{0.4}{0.35} \right\} = \frac{0.2}{0.3}$

x_2^2 enters the basis, replacing x_2^1

Iteration 1

LP Tableau

	★	★★							
k:	1	2	3	1	2	1	2	3	
i:	1	1	1	2	2	3	3	3	rhs
Min	0	-4.5	6.6666	16.5	0	0	-7.1666	5.70833	12.5
	1	1.9166	1.25	-1.16667	0	0	0.5	-0.79166	0.1666
	0	-1.3333	0.3333	3.33333	1	0	-1.3333	0.5	0.6666
	0	0.4166	-0.5833	-1.16667	0	1	1.8333	1.29167	0.1666

basic solution

$$\begin{cases} x_1^1 = \frac{1}{6} \\ x_2^2 = \frac{2}{3} \\ x_3^1 = \frac{1}{6} \end{cases}$$

Iteration 1

Policy: (Cost= -12.5)

State	Action	$P\{i\}$
1 Town A	1 Cruise	0.166667
2 Town B	2 Cabstand	0.666667
3 Town C	1 Cruise	0.166667

Iteration 1

LP Tableau

	★	★★							
k:	1	2	3	1	2	1	2	3	
i:	1	1	1	2	2	3	3	3	rhs
Min	0	-4.5	6.6666	16.5	0	0	-7.1666	5.70833	12.5
	1	1.9166	1.25	-1.16667	0	0	0.5	-0.79166	0.1666
	0	-1.3333	0.3333	3.33333	1	0	-1.3333	0.5	0.6666
	0	0.4166	-0.5833	-1.16667	0	1	1.8333	1.29167	0.1666

$$\text{minimum } \left\{ \frac{0.166}{0.5}, \frac{0.1666}{1.833} \right\} = \frac{0.1666}{1.8333}$$

x_3^2 enters the basis, replacing x_3^1

Iteration 2

LP Tableau

	★		★		★						
k:	1	2	3		1	2	1	2	3		
i:	1	1	1		2	2	3	3	3		rhs
Min	0	-2.8712	4.3863	11.9394	0	3.9090	0	10.7576	13.1515		
	1	1.8030	1.4090	-0.8484	0	-0.2727	0	-1.1439	0.1212		
	0	-1.0303	-0.0909	2.4848	1	0.7272	0	1.4393	0.7878		
	0	0.2272	-0.3181	-0.6363	0	0.5454	1	0.7045	0.0909		

*Note that for every state,
there is a variable in the
basis for only one action!*

Iteration 2

Policy: (Cost= -13.1515)

State	Action	$P\{i\}$
1 Town A	1 Cruise	0.121212
2 Town B	2 Cabstand	0.787879
3 Town C	2 Cabstand	0.0909091

Iteration 2

LP Tableau

LP Tableau

	★	★	★						
k:	1	2	3	1	2	1	2	3	
i:	1	1	1	2	2	3	3	3	rhs
Min	1.59244	0	6.63025	10.5882	0	3.4747	0	8.9359	13.3445
	0.55462	1	0.78151	-0.4705	0	-0.1512	0	-0.6344	0.06722
	0.57142	0	0.71428	2	1	0.5714	0	0.7857	0.85714
	-0.12605	0	-0.49579	-0.5294	0	0.5798	1	0.8487	0.07563

*Reduced costs are all nonnegative...
the optimality condition is satisfied!*

Optimal Policy

Iteration 3

Policy: (Cost= -13.3445)

State	Action	$P\{i\}$
1 Town A	2 Cabstand	0.0672269
2 Town B	2 Cabstand	0.857143
3 Town C	2 Cabstand	0.0756303

The optimal policy found by the simplex LP algorithm is deterministic, not randomized, i.e., for each state, only one action is specified.

LP Algorithm for MDP with discounting

Determining a policy which minimizes the *present value* of all future costs over an infinitely long planning horizon.

Note: existence of a steady state distribution is *not* assumed!

The present value of future costs (i.e., the discounted future costs) will depend upon the initial state of the system.

Define

α_j = probability that system is initially in state j

Note: If the initial state is known, then
 $\alpha = [0, 0, \dots, 0, 1, 0, \dots 0]$

Decision variables

$\lambda_i^k(n)$ = Joint probability that
system is in state j in period n
and action $k \in K_j$ is selected

Note that this definition of the decision variables does not assume that the same policy is optimal for every stage!

Define

$$\beta = \text{discount factor} = \frac{1}{1+r}$$

where r = rate of return per stage

Then the present value of a cost Y which is incurred 1 period hence is βY
2 periods hence is $\beta^2 Y$
⋮
 n periods hence is $\beta^n Y$

If C_j^k = cost of action k in state j

then

$$\sum_j \sum_{k \in K_j} C_j^k \lambda_j^k(n) = \text{expected cost during stage (period) } n$$

and

$$\sum_{n=0}^{\infty} \beta^n \sum_j \sum_{k \in K_j} C_j^k \lambda_j^k(n) = \text{present value of all costs in periods } n=0, 1, 2, \dots$$

Our objective is therefore to minimize the discounted future expected costs:

$$\sum_j \sum_{k \in K_j} \left[\sum_{n=0}^{\infty} \beta^n C_j^k \lambda_j^k(n) \right]$$

Constraints

For each state j at stage $n=0$: $\sum_{k \in K_j} \lambda_j^k(0) = \alpha_j$

For each state j at stage n , $n=1, 2, \dots$

$$\underbrace{\sum_{k \in K_j} \lambda_j^k(n)} = \underbrace{\sum_i \sum_{k \in K_i} p_{ij}^k \lambda_i^k(n-1)}$$

*Probability that system
is in state j at stage n*

*Probability that system makes
transition from state i in
stage $n-1$ to state j in stage n*

*Note that there is an infinite number of
constraints, as well as infinitely many
variables!*

In order to reduce the size of the LP to finite proportions, we will utilize the *z-transform*.

The *z-transform* of the sequence $\{a_n\}_{n=0}^{\infty}$ is the *function*

$$F(z) = \sum_{n=0}^{\infty} z^n a_n$$

[See Queueing Systems, Vol. 1, Appendix 1 by L. Kleinrock]

Note that, given F , we can reconstruct the sequence:

$$a_n = \frac{1}{n!} \frac{d^n F(0)}{dz^n}$$

For each pair of state j and action k ,
consider the sequence of probabilities

$$\{\lambda_j^k(n)\}_{n=0}^{\infty}$$

Its z -transform is $F(z) = \sum_{n=0}^{\infty} z^n \lambda_j^k(n)$

Define a new set of decision variables

$$x_j^k = \sum_{n=0}^{\infty} \beta^n \lambda_j^k(n)$$

i.e., the z -transform of $\{\lambda_j^k(n)\}_{n=0}^{\infty}$
evaluated at β

We are then able to rewrite our objective function

$$\sum_j \sum_{k \in K_j} \left[\sum_{n=0}^{\infty} \beta^n C_j^k \lambda_j^k(n) \right]$$

with a finite number of terms:

$$\sum_j \sum_{k \in K_j} C_j^k x_j^k$$

where

$$x_j^k = \sum_{n=0}^{\infty} \beta^n \lambda_j^k(n)$$

Constraints

In order to reduce the set of constraints to a finite number (many variables), perform the reductions:

- For each pair j & n , multiply the corresponding constraint by β^n

- For each state j , sum the equations over n :

$$\implies \sum_{n=0}^{\infty} \sum_{k \in K_j} \beta^n \lambda_j^k(n) = \alpha_j + \beta \sum_{n=1}^{\infty} \sum_i \sum_{k \in K_i} p_{ij}^k \beta^{n-1} \lambda_i^k(n-1)$$

- Rearrange the order of summation in this new constraint:

$$\sum_{n=0}^{\infty} \sum_{k \in K_j} \beta^n \lambda_j^k(n) = \alpha_j + \beta \sum_{n=1}^{\infty} \sum_i \sum_{k \in K_i} p_{ij}^k \beta^{n-1} \lambda_i^k(n-1)$$

$$\Rightarrow \sum_{k \in K_j} \sum_{n=0}^{\infty} \beta^n \lambda_j^k(n) = \alpha_j + \beta \sum_i \sum_{k \in K_i} \sum_{n=1}^{\infty} p_{ij}^k \beta^{n-1} \lambda_i^k(n-1)$$

$$\Rightarrow \boxed{\sum_{k \in K_j} x_j^k = \alpha_j + \beta \sum_i \sum_{k \in K_i} x_i^k} \quad \text{for all } j$$

since $\sum_{n=1}^{\infty} p_{ij}^k \beta^{n-1} \lambda_i^k(n-1) = \sum_{n=0}^{\infty} \beta^n \lambda_i^k(n)$

LP Model

$$\text{Minimize} \sum_j \sum_{k \in K_j} C_j^k x_j^k$$

subject to

$$\sum_{k \in K_j} x_j^k = \alpha_j + \beta \sum_i \sum_{k \in K_i} p_{ij}^k x_i^k \quad \text{for all } j$$
$$x_j^k \geq 0$$

Note that • sum of x is not specified to be 1
• no redundant constraint was
eliminated from state equations

Using the "Kronecker delta", i.e.,

$$\delta_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i \neq j \end{cases}$$

this LP model may be rewritten:

$$\begin{aligned} & \text{Minimize} \sum_j \sum_{k \in K_j} C_j^k x_j^k \\ & \text{subject to} \\ & \sum_i \sum_{k \in K_i} (\delta_{ij} - \beta p_{ij}^k x_i^k) = \alpha_j \quad \text{for all } j \\ & x_j^k \geq 0 \end{aligned}$$

If x^* is the optimal basic solution, then

$$x_j^{*k} > 0 \text{ (i.e., basic)}$$

implies that

the optimal policy is to select action k when in state j *for every stage $n=0,1,2,\dots$*

i.e., the optimal policy is stationary, same for every time period!

