

Markov *Decision* *Processes*

A **Markov Decision Process (MDP)** is a classification of stochastic Dynamic Programming models.

An **MDP** consists of a finite set \mathbf{S} of **states** and, for each state $s \in S$, a finite set A_s of alternative **actions**.

When in state s at **stage** n and action $a \in A_s$ is selected, a **reward** $r(s,a)$ is earned or a **cost** $c(s,a)$ is incurred.

The system then makes a **transition** into another state s' with probability $p_{s,s'}^a \equiv P\{X_{n+1} = s' | X_n = s \text{ & action } a \in A_s \text{ is selected}\}$.

Notes:

- we assume *stationary* transition probabilities! That is, for a given state/action combination i & j , the value of p_{ij} is the same for all stages.
- the "*Markov property*" is assumed, that is, the future behavior of the process is dependent *only* upon the current state (and the action selected), and not on any prior history.
- MDPs may have either a **finite** number of stages or **infinitely** many stages.

Examples

Maintenance planning

Inventory replenishment

No-claim limits for auto insurance

Objective criterion

- ◆ *Finite number **N** of stages:*
 - Total *expected cost* or return
 - Total *expected discounted cost* or return
- ◆ *Infinitely many stages:*
 - *Average cost per stage* (assuming steady state behavior)
 - total *expected discounted cost* or return

Finite horizon MDPs may be solved by

- *stochastic dynamic programming* (DP).

Infinite horizon MDPs may be solved by

- *Value iteration* (limit of DP solution as $N \rightarrow \infty$)
- *Policy improvement* algorithm
- *Linear programming* algorithm