

author

Markov Decision Problems

An Introduction

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242

e-mail: dbricker@icaen.uiowa.edu

Notation & Description

🕼 "Taxicab" example

Delta Linear Programming (LP) Algorithm

Policy Improvement (PI) Algorithm

More examples

More examples....

- Batch processing
- P

P

- Electric generator control
- P

P

P

- Production planning
- 🕼 Machine replacement
 - Machine maintenance
 - Advertising planning

Ĵ

Given:

ullet a set $\,S\,$ of possible states of the system

 \bullet for each state $\mbox{ }_i \mbox{ } \mbox{$

•
$$P_{ij}^k = P\{X_{t+1} = j \mid X_t = i \& action k \in K_i is selected\}$$

•
$$C_{ij}^{k} = cost$$
 incurred when $X_{t}=i$, action keK_i is selected, and $X_{t+1}=j$

ŝ

The Markov Decision Process

At each stage:

- \bullet observe the state of the system i \in S
- \bullet select action $\mbox{ k} \in \mbox{K}_i$
- \bullet system makes transition to state j ε S with probability \mathbf{P}_{ij}^k
- a cost ξ_{ij}^k is incurred or equivalently,

an expected cost
$$\, {\bf C}_i^k \equiv \, \sum_j p_{ij}^k \, \xi_{ij}^k \,$$
 is incurred

A policy R is a vector of actions $R = (k_1, k_2, k_3, ..., k_n)$ specifying that action $k_i \in K_i$ is to be selected when the system is in state i.

Each policy $R = (k_1, k_2, k_3, \dots, k_n)$ then determines a Markov chain with transition probabilities $P_{ij}^{k_i}$

Suppose that the Markov chain for every policy has a steady state distribution π^{R}

What policy R optimizes the expected cost $\sum_{i=1}^{n} \pi_{i}^{R} C_{i}^{k_{i}}$

That is,

which action should be selected in each state in order to optimize the expected cost?

Example Taxi Problem

A taxi serves 3 adjacent cities: A, B, & C
Each time the taxi discharges a passenger, the driver must choose from 3 possible actions:
1) "cruise" the streets, looking for passenger
2) drive to nearest cab stand (hotel, bus station, train station, etc.)

3) park and wait for radio call from dispatcher

action 3 is not possible in city B, as distance from transmitter is too great!

te	ion	transition probability			reward		
state	act	j=1	2	3	j=1	2	3
	1	1/2	1/4	1/4	10	4	8
А	2	1/16	3/4	3/16	8	2	4
	3	1/4	1/ <mark>8</mark>	5/ <mark>8</mark>	4	6	4

States: S = {A, B, C}
Actions:
$$K_A$$
={1,2,3}, K_B ={1,2}, K_C ={1,2,3}

page	10
------	----

tate	ion	transition probability			reward		
sta	act	j=1	2	3	j=1	2	3
В	1	1/2	0	1/2	14	0	18
	2	1/16	7/ <mark>8</mark>	1/16	8	16	8

MDP Intro		

te	ion	transition probability			reward		
state	act	j=1	2	3	j=1	2	3
	1	1/4	1/4	1/2	10	2	8
С	2	1/8	3/4	1/ <mark>8</mark>	6	4	2
	3	3/4	1/16	3/ ₁₆	4	0	8