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Assume that the state space of a Markov Decision Problem (MDP)

is countable but infinite.

Four different optimization criteria are considered:

Expected discounted cost over finite horizon
Expected cost/stage over finite horizon
Expected discounted cost over infinite horizon
Expected cost/stage over infinite horizon

L=
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Denote the original MDP by A, with infinite (but countable) state
space S.
It is common, for computational purposes, to approximate A by a

MDP with finite state space of size N.

As N is increased, the approximating MDP is "improved".

We are interested in the limit as N - oo,
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Definition

Consider the sequence {A,} voy Of MDPs, where

=0

e the state space of A, is the nonempty finite set S, U S,
e the action set for state ilJS, is 4, and
e the cost for action a4, is C;.

Let {SN} NN, be an increasing sequence of subsets of S such

that
. %SN: S, and
« for each i0S, and a04,, P:(N) is a probability
distribution on S such that lim B (N) =P

Then {A N} is an approximating sequence (AS) for the

NzN,

MDP A, and N is the approximation level.
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The usual way to define an approximating distribution is by

means of an augmentation procedure:

Suppose that in state i[1S,,, action a4, is chosen.

For jUS, the probability P’ is unchanged.
Suppose, however, that P’ >0 for some r1S,,

i.e., there is a positive probability that the system makes a
transition to a state outside of Sn.

This is said to be excess probability associated with (i,a,r,N).
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In order to define a valid MDP, this excess probability must be
distributed among the states of Sy according to some specified
augmentation distribution q;(i,a,r,N),

where

qu (i,a,r,N) =1 for each (i,a,r,N).
j

The quantity qgj(i,a,r,N) specifies what portion of the excess

probability P! is redistributed to state j[1S,,.
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Definition: The approximating sequence {AN} is an

A
&& augmentation-type approximating sequence (ATAS) if the

oy 2PpProximating distributions are defined as follows:

P (N)=F +Y Fqliar.N)

rDSN

Notes:

« The original probabilities on Sy are never decreased, but
may be augmented by addition of portions of excess
probability.

e Often it is the case that there is some distinguished state z

such that for each (i,a,r,N), ¢, (i,a,r,N)=1

(That is, all excess probability is sent to the distinguished state.)
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Intinite Herizon Case

For the discounted-cost MDP A with infinite horizon, and infinite

state space S, let

V2 (0) m{c +ﬁ213m(f)}, S
’ J

Suppose we have an approximating sequence {A N} , with

corresponding optimal values VﬂN

Major questions of interest:

e When does lei?lVﬂN (z) = Vﬁ(i) < +00?

« If 7" is the optimal policy for Ax, when does 7" converge to an
optimal policy for A?
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Infinite Horizon Discounted Cost Assumption DC(p):

For i[JS we have

limsupV,B],v (z) =W, (z) < 400

N - o

and

Theorem (Sennott, page 76):

The following are equivalent:

e limVY =V, <+
am s =V

« Assumption DC(f3) holds.
If one (& therefore both) of these conditions are valid, and {ng} is

an optimal stationary policy for A,. Then any limit point of the
sequence is optimal for A.
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The following theorem of Sennot (p. 77) gives a sufficient

condition for DC() to hold (and hence for the convergence of the
approximating sequence method):

Theorem:

Assume that there exists a finite constant B such that

C’ < B for every iJS and al4,. Then DC(() is valid for
A0(0,1)
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Examples
Inventory Replenishment

Consider again our earlier application to inventory replenishment:

¢ The daily demand is random, with Poisson distribution having mean
of 3 units.

¢ The inventory on the shelf (the state) is counted at the end of each
business day, and a decision is then made to raise the inventory level to
S at the beginning of the next business day.

¢ There is a fixed cost A=10 of placing an order, a holding cost =1 for
each item in inventory at the end of the day, and a penalty p=5 for each
unit backordered.

We imposed limits of 7 units of stock-on-hand and 3 backorders, and
found that the policy which minimizes the expected cost/day is of type
(s,S) = (2, 6), i.e., if the inventory position is 2 or less, order enough to
bring the inventory level up to 6.
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Consider the problem with infinitely-many states, i.e.,
S={-0,...-2, =1,0,1,2,3,4,... +

and the objective of minimizing the discounted cost, with discount factor

1
1+0.20

b= =0.833333.

What is the optimal replenishment policy?
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Approximating Sequence Method

N=1

To define the first MDP in the sequence, A1, use state space

S ={-2,-1,0,1,2, .16

i.e., assume a limit of 2 backorders and 6 units in stock. The optimal

policy is (s, S) = (2, 6):

State | Action | V
BO= two | SOH= 6 | 72.3583
BO= one | SOH= 6 | 57.3583
SOH= zero | SOH= 6 | 52.3583
SOH= one | SOH= 6 | 53.3583
SOH= two | SOH= 2 | 52.4908
SOH= three | SOH= 3 | 50.4510
SOH= four | SOH= 4 | 49. 2100
SOH= five | SOH= 5 | 48.5763
SOH= si X | SOH= 6 | 48.3583
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N=2

We now increase the state space to
S=1{-3,-2,-1,0,1, 2,...6},7
i.e., assume a limit of 3 backorders and 7 units in stock, and find that the

optimal policy is (s, S) = (2, 7):

State | Action | V
BO= three | SOH= 7 | 98.2503
BO= two | SOH= 7 | 73.2503
BO= one | SOH= 7 | 58.2503
SOH= zero | SOH= 7 | 53.2503
SOH= one | SOH= 7 | 54.2503
SOH= two | SOH= 7 | 55.2503
SOH= three | SOH= 3 | 53. 2667
SOH= four | SOH= 4 | 51.3011
SOH= five | SOH= 5 | 50.4785
SOH= si X | SOH= 6 | 50.2025
SOH= seven | SOH= 7 | 50. 2503
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N =3

We now increase the state space to S3 ={-4, -3, -2,-1,0,1, 2, ... 7},8
i.e., assume a limit of 4 backorders and 8 units in stock, and find that the

optimal policy is (s, S) = (2, 8):

State | Action | V
BO= f our | SOH= 8 | 130.6728
BO=three | SOH=8 | 95.6728
BO= two | SOH= 8 | 70.6728
BO= one | SOH= 8 | 55.6728
SOH= zero | SOH= 8 | 50.6728
SOH= one | SOH= 8 | 51.6728
SOH= two | SOH= 8 | 52.6728
SOH= three | SOH= 3 | 51.8500
SOH= four | SOH=4 | 49.3778
SOH= five | SO+ 5 | 48.4689
SOH= si X | SOH= 6 | 48.2269
SOH= seven | SOH= 7 | 48.3086
SOH= eight | SOH= 8 | 48.6728
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N=4

We now increase the state space to S4={-5,...,-1,0,1, 2, ..., 9,0

and find that the optimal policy is (s, S) = (2, 10):

State | Action | V
BO= five | SOH= 10 | 176.7718
BO= four | SOH= 10 | 131.7718
BO= three | SOH= 10| 96.7718
BO= two | SOH= 10 | 71.7718
BO= one | SOH= 10| 56.7718
SOH= zero | SOH= 10| 51.7718
SOH= one | SOH= 10 | 52.7718
SOH= two | SOH= 10 | 53.7718
SOH= three | SOH= 3 | 53.5004
SOH= four | SOH+= 4 | 50.7828
SOH= five | SO+ 5 | 49.8438
SOH= si x | SOH= 6 | 49.6259
SOH= seven | SOH= 7 | 49.7289
SOH= eight | SOH= 8 | 50.1051
SOH= nine | SOH= 9 | 50.7841
SOH= ten | SOH= 10 | 51.7718
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The optimal policy is again (s, S) = (2, 10):

State Action | V
BO= si x | SOH= 10 | 231.8900
BO= five | SOH= 10 | 176.8900
BO= f our | SOH= 10 | 131.8900
BO= t hree | SOH= 10 | 96.8900
BO= two | SOH= 10 | 71.8900
BO= one | SOH= 10 | 56.8900
SOH= zero | SOH= 10 | 51.8900
SOH= one | SOH= 10 | 52.8900
SOH= two | SOH= 10 | 53.8900
SOH= three | SOH= 3 | 53.7796
SOH= f our | SOH= 4 | 50.9538
SOH= five | SOH= 5 | 49.9933
SOH= si x | SOH= 6 | 49.7723
SOH= seven | SOH= 7 | 49.8706
SOH= eight | SOH= 8 | 50.2390
SOH= ni ne | SOH= 9 | 50.9098
SOH= ten | SOH= 10 | 51.8900
SOH= eleven | SOH= 11 | 53.1630
SOH= twelve | SOH= 12 | 54.7082
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The optimal policy is again (s, S) = (2, 10):

State | Action | V
BO= seven | SOH= 10 | 296. 9292
BO= si x | SOH= 10 | 231.9292
BO= five | SOH= 10 | 176.9292
BO= f our | SOH= 10 | 131.9292
BO= t hree | SOH= 10 | 96.9292
BO= two | SOH= 10 | 71.9292
BO= one | SOH= 10 | 56.9292
SOH= zero | SOH= 10 | 51.9292
SOH= one | SOH= 10 | 52.9292
SOH= two | SOH= 10 | 53.9292
SOH= t hree | SOH= 3 | 53.8742
SOH= f our | SOH= 4 | 51.0097
SOH= five | SOH=5 | 50.0426
SOH= fourteen | SOH= 14 | 58.5790
SOH= fifteen | SOH= 15| 60.8442

The optimal policies have converged to (s, S) = (2, 10)
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Finite Herzon Case

For the MDP A with finite horizon n and infinite state space S, let

all4;

vﬁ,n(i):mm{c,.a+ﬁze,-“vﬁ,n_l(j)}, D s» 1
J

Suppose we have an approximating sequence {A N} , with
corresponding optimal values vg, i

Major questions of interest:

« When does ]lviEI}ovg,n (i) = v, (i)?

« If 7" is the optimal policy for Ax, when does 7" converge to an
optimal policy for A?

Finite Horizon Assumption FH(3,n):
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For i[JS we have

. N -
htz?sup Vg, =Wg, <t

and
wp, (1)< v, (7)

Theorem (Sennott, page 43):

Let n>1 be fixed. The following are equivalent:

. N _
* limyg, =vg, <o

« Assumption FH((3,n) holds.
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The following theorem of Sennot (p. 45) gives a sufficient

condition for FH(B,n) to hold (and hence for the convergence of

the approximating sequence method):

Theorem:

Suppose that there exists a finite constant B such that
C'<B
F <B
where Fj is the terminal cost of state il1S. Then FH((3,n)
holds for all § and n>1.
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