

Cf. Linn Sennott, *Stochastic Dynamic Programming and the Control of Queueing Systems*, Wiley Series in Probability & Statistics, 1999.

D.L.Bricker, 2001 Dept of Industrial Engineering The University of Iowa Assume that the state space of a Markov Decision Problem (MDP) is countable but *infinite*.

Four different optimization criteria are considered:

	Expected	Average
Cases	discounted costs	cost/stage
Finite horizon	1	2
Infinite horizon	3	4

- 1. Expected discounted cost over finite horizon
- 2. Expected cost/stage over finite horizon
- 3. Expected discounted cost over infinite horizon
- 4. Expected cost/stage over infinite horizon

Denote the original MDP by Δ , with infinite (but countable) state space S.

It is common, for computational purposes, to approximate Δ by a MDP with *finite* state space of size N.

As N is increased, the approximating MDP is "improved". We are interested in the limit as $N \rightarrow \infty$.

Definition

Consider the sequence $\{\Delta_N\}_{N\geq N_0}$ of MDPs, where

- the state space of Δ_N is the nonempty *finite* set $S_N \subset S$,
- the action set for state $i \in S_N$ is A_i , and
- the cost for action $a \in A_i$ is C_i^a .

Let $\{S_N\}_{N \ge N_0}$ be an increasing sequence of subsets of S such that

•
$$\bigcup_{N} S_{N} = S$$
, and

• for each $i \in S_N$ and $a \in A_i$, $P_i^a(N)$ is a probability distribution on S_N such that $\lim_{N \to \infty} P_{ij}^a(N) = P_{ij}^a$

Then $\{\Delta_N\}_{N \ge N_0}$ is an *approximating sequence* (AS) for the MDP Δ , and N is the *approximation level*.

The usual way to define an approximating distribution is by means of an *augmentation procedure*:

Suppose that in state $i \in S_N$, action $a \in A_i$ is chosen.

For $j \in S_N$ the probability P_{ij}^a is unchanged.

Suppose, however, that $P_{ir}^a > 0$ for some $r \notin S_N$,

i.e., there is a positive probability that the system makes a transition to a state outside of S_N .

This is said to be *excess probability* associated with (i,a,r,N).

In order to define a valid MDP, this excess probability must be distributed among the states of S_N according to some specified *augmentation distribution* $q_j(i,a,r,N)$,

where

L

G

entat i

0 n

Proce

d

U

$$\sum_{j} q_{j}(i,a,r,N) = 1 \text{ for each (i,a,r,N)}.$$

The quantity $q_j(i,a,r,N)$ specifies what portion of the excess

probability P_{ir}^{a} is redistributed to state $j \in S_{N}$.

Definition: The approximating sequence $\{\Delta_N\}$ is an *augmentation-type approximating sequence* (**ATAS**) if the approximating distributions are defined as follows:

$$P_{ij}^{a}\left(N\right) = P_{ij}^{a} + \sum_{r \notin S_{N}} P_{ij}^{a} q\left(i, a, r, N\right)$$

Notes:

- The original probabilities on S_N are *never* decreased, but may be augmented by addition of portions of excess probability.
- Often it is the case that there is some *distinguished state* z such that for each (i,a,r,N), $q_z(i,a,r,N) = 1$

(That is, all excess probability is sent to the distinguished state.)

MDP -- Approximating Sequences

Infinite Horizon Case

For the discounted-cost MDP Δ with infinite horizon, and infinite state space *S*, let

$$V_{\beta}(i) = \min_{a \in A_{i}} \left\{ C_{i}^{a} + \beta \sum_{j} P_{ij}^{a} V_{\beta}(j) \right\}, \quad \forall j \in S$$

Suppose we have an *approximating sequence* $\{\Delta_N\}$, with corresponding optimal values V_{β}^N

Major questions of interest:

- When does $\lim_{N\to\infty} V_{\beta}^{N}(i) = V_{\beta}(i) < +\infty$?
- If π^N is the optimal policy for Δ_N, when does π^N converge to an optimal policy for Δ?

Infinite Horizon Discounted Cost Assumption **DC**(β):

For $i \in S$ we have

$$\limsup_{N\to\infty} V_{\beta}^{N}(i) \equiv W_{\beta}(i) < +\infty$$

and

 $W_{\beta}\left(i\right) \leq V_{\beta}\left(i\right)$

Theorem (Sennott, page 76):

The following are equivalent:

- $\lim_{N \to \infty} V_{\beta}^{N} = V_{\beta} < +\infty$
- Assumption **DC(\beta)** holds.

If one (& therefore both) of these conditions are valid, and $\{\pi_{\beta}^{N}\}$ is an optimal stationary policy for Δ_{N} . Then any limit point of the sequence is optimal for Δ . The following theorem of Sennot (p. 77) gives a sufficient condition for **DC(\beta)** to hold (and hence for the convergence of the approximating sequence method):

Theorem:

Assume that there exists a finite constant *B* such that $C_i^a \leq B$ for every $i \in S$ and $a \in A_i$. Then **DC(** β **)** is valid for $\beta \in (0,1)$

Inventory Replenishment

Consider again our earlier application to inventory replenishment:

- The daily demand is random, with Poisson distribution having mean of 3 units.
- The inventory on the shelf (the *state*) is counted at the end of each business day, and a *decision* is then made to raise the inventory level to *S* at the beginning of the next business day.
- ♦ There is a fixed cost A=10 of placing an order, a holding cost h=1 for each item in inventory at the end of the day, and a penalty p=5 for each unit backordered.

We imposed limits of 7 units of stock-on-hand and 3 backorders, and found that the policy which minimizes the expected cost/day is of type (s,S) = (2, 6), i.e., if the inventory position is 2 or less, order enough to bring the inventory level up to 6.

MDP -- Approximating Sequences

Consider the problem with *infinitely-many states*, i.e.,

$$S = \{-\infty, \dots -2, -1, 0, 1, 2, 3, 4, \dots +\infty\}$$

and the objective of minimizing the *discounted cost*, with discount factor

$$\beta = \frac{1}{1+0.20} = 0.833333.$$

What is the optimal replenishment policy?

Approximating Sequence Method N = 1

To define the first MDP in the sequence, Δ_1 , use state space

$$S_1 = \{-2, -1, 0, 1, 2, ...6\},\$$

i.e., assume a limit of 2 backorders and 6 units in stock. The optimal policy is **(s, S) = (2, 6)**:

State	Action	V
BO= two	SOH= 6	72.3583
BO= one	SOH= 6	57.3583
SOH= zero	SOH= 6	52.3583
SOH= one	SOH= 6	53.3583
SOH= two	SOH= 2	52.4908
SOH= three	SOH= 3	50.4510
SOH= four	SOH= 4	49.2100
SOH= five	SOH= 5	48.5763
SOH= six	SOH= 6	48.3583

We now increase the state space to

$$S_2 = \{-3, -2, -1, 0, 1, 2, \dots 6, 7\},\$$

i.e., assume a limit of 3 backorders and 7 units in stock, and find that the optimal policy is (s, S) = (2, 7):

State	Action	V V
BO= three	SOH= 7	98.2503
BO= two	SOH= 7	73.2503
BO= one	SOH= 7	58.2503
SOH= zero	SOH= 7	53.2503
SOH= one	SOH= 7	54.2503
SOH= two	SOH= 7	55.2503
SOH= three	SOH= 3	53.2667
SOH= four	SOH= 4	51.3011
SOH= five	SOH= 5	50.4785
SOH= six	SOH= 6	50.2025
SOH= seven	SOH= 7	50.2503

We now increase the state space to $S_3 = \{-4, -3, -2, -1, 0, 1, 2, ..., 7, 8\}$,

i.e., assume a limit of 4 backorders and 8 units in stock, and find that the optimal policy is (s, S) = (2, 8):

State	Action	V
BO= four	SOH= 8	130.6728
BO= three	SOH= 8	95.6728
BO= two	SOH= 8	70.6728
BO= one	SOH= 8	55.6728
SOH= zero	SOH= 8	50.6728
SOH= one	SOH= 8	51.6728
SOH= two	SOH= 8	52.6728
SOH= three	SOH= 3	51.8500
SOH= four	SOH= 4	49.3778
SOH= five	SOH= 5	48.4689
SOH= six	SOH= 6	48.2269
SOH= seven	SOH= 7	48.3086
SOH= eight	SOH= 8	48.6728

We now increase the state space to $S_4 = \{-5, ..., -1, 0, 1, 2, ..., 9, 10\}$,

and find that the optimal policy is (s, S) = (2, 10):

State	Action	V V
BO= five	SOH= 10	176.7718
BO= four	SOH= 10	131.7718
BO= three	SOH= 10	96.7718
BO= two	SOH= 10	71.7718
BO= one	SOH= 10	56.7718
SOH= zero	SOH= 10	51.7718
SOH= one	SOH= 10	52.7718
SOH= two	SOH= 10	53.7718
SOH= three	SOH= 3	53.5004
SOH= four	SOH= 4	50.7828
SOH= five	SOH= 5	49.8438
SOH= six	SOH= 6	49.6259
SOH= seven	SOH= 7	49.7289
SOH= eight	SOH= 8	50.1051
SOH= nine	SOH= 9	50.7841
SOH= ten	SOH= 10	51.7718

N = 5 Increase the state space to $S_5 = \{-6, ..., -1, 0, 1, 2, ..., 11, 12\}.$

State	Action	V V
BO= six	SOH= 10	231.8900
BO= five	SOH= 10	176.8900
BO= four	SOH= 10	131.8900
BO= three	SOH= 10	96.8900
BO= two	SOH= 10	71.8900
BO= one	SOH= 10	56.8900
SOH= zero	SOH= 10	51.8900
SOH= one	SOH= 10	52.8900
SOH= two	SOH= 10	53.8900
SOH= three	SOH= 3	53.7796
SOH= four	SOH= 4	50.9538
SOH= five	SOH= 5	49.9933
SOH= six	SOH= 6	49.7723
SOH= seven	SOH= 7	49.8706
SOH= eight	SOH= 8	50.2390
SOH= nine	SOH= 9	50.9098
SOH= ten	SOH= 10	51.8900
SOH= eleven	SOH= 11	53.1630
SOH= twelve	SOH= 12	54.7082

The optimal policy is again (s, S) = (2, 10):

N = 6 Increase the state space to $S_5 = \{-7, ..., -1, 0, 1, 2, ..., 11, 15\}$.

State	Action	V	
BO= seven	SOH= 10	296.9292	
BO= six	SOH= 10	231.9292	
BO= five	SOH= 10	176.9292	
BO= four	SOH= 10	131.9292	
BO= three	SOH= 10	96.9292	
BO= two	SOH= 10	71.9292	
BO= one	SOH= 10	56.9292	
SOH= zero	SOH= 10	51.9292	
SOH= one	SOH= 10	52.9292	
SOH= two	SOH= 10	53.9292	
SOH= three	SOH= 3	53.8742	
SOH= four	SOH= 4	51.0097	
SOH= five	SOH= 5	50.0426	
•	•	•	
SOH= fourteen	SOH= 14	58.5790	
SOH= fifteen	SOH= 15	60.8442	

The optimal policy is again (s, S) = (2, 10):

The optimal policies have converged to (s, S) = (2, 10)

Finite Horizon Case

For the MDP Δ with finite horizon *n* and infinite state space *S*, let

$$v_{\beta,n}(i) = \min_{a \in A_i} \left\{ C_i^a + \beta \sum_j P_{ij}^a v_{\beta,n-1}(j) \right\}, \quad \forall j \in S, n \ge 1$$

Suppose we have an *approximating sequence* $\{\Delta_N\}$, with

corresponding optimal values $v_{\beta,n}^N$

Major questions of interest:

- When does $\lim_{N\to\infty} v_{\beta,n}^N(i) = v_{\beta,n}(i)$?
- If π^N is the optimal policy for Δ_N, when does π^N converge to an optimal policy for Δ?

Finite Horizon Assumption **FH(β,n)***:*

For $i \in S$ we have

$$\limsup_{N \to \infty} v_{\beta,n}^N \equiv w_{\beta,n} < +\infty$$

and

$$w_{\beta,n}\left(i\right) \leq v_{\beta,n}\left(i\right)$$

Theorem (Sennott, page 43):

Let $n \ge 1$ be fixed. The following are equivalent:

•
$$\lim_{N \to \infty} v_{\beta,n}^N = v_{\beta,n} < +\infty$$

• Assumption **FH(\beta,n)** holds.

The following theorem of Sennot (p. 45) gives a sufficient condition for **FH(\beta,n**) to hold (and hence for the convergence of the approximating sequence method):

Theorem:

Suppose that there exists a finite constant **B** such that $C_i^a \leq B$ $F_i \leq B$ where F_i is the terminal cost of state $i \in S$. Then **FH(\beta,n)** holds for all β and $n \geq 1$.