

Approximating Sequence Method

MDP with
Infinite State Space

Cf. Linn Sennott, *Stochastic Dynamic Programming and the Control of Queueing Systems*, Wiley Series in Probability & Statistics, 1999.

D.L.Bricker, 2001
Dept of Industrial Engineering
The University of Iowa

Assume that the state space of a Markov Decision Problem (MDP) is countable but *infinite*.

Four different optimization criteria are considered:

Cases	Expected discounted costs	Average cost/stage
Finite horizon	1	2
Infinite horizon	3	4

1. Expected discounted cost over finite horizon
2. Expected cost/stage over finite horizon
3. Expected discounted cost over infinite horizon
4. Expected cost/stage over infinite horizon

Denote the original MDP by Δ , with infinite (but countable) state space S .

It is common, for computational purposes, to approximate Δ by a MDP with *finite* state space of size N .

As N is increased, the approximating MDP is "improved".

We are interested in the limit as $N \rightarrow \infty$.

Definition

Consider the sequence $\{\Delta_N\}_{N \geq N_0}$ of MDPs, where

- the state space of Δ_N is the nonempty *finite* set $S_N \subset S$,
- the action set for state $i \in S_N$ is A_i , and
- the cost for action $a \in A_i$ is C_i^a .

Let $\{S_N\}_{N \geq N_0}$ be an increasing sequence of subsets of S such that

- $\bigcup_N S_N = S$, and
- for each $i \in S_N$ and $a \in A_i$, $P_i^a(N)$ is a probability distribution on S_N such that $\lim_{N \rightarrow \infty} P_{ij}^a(N) = P_{ij}^a$

Then $\{\Delta_N\}_{N \geq N_0}$ is an **approximating sequence** (AS) for the MDP Δ , and N is the *approximation level*.

A u g m e n t a t i o n P r o c e d u r e

The usual way to define an approximating distribution is by means of an ***augmentation procedure***:

Suppose that in state $i \in S_N$, action $a \in A_i$ is chosen.

For $j \in S_N$ the probability P_{ij}^a is unchanged.

Suppose, however, that $P_{ir}^a > 0$ for some $r \notin S_N$,

i.e., there is a positive probability that the system makes a transition to a state outside of S_N .

This is said to be ***excess probability*** associated with (i, a, r, N) .

In order to define a valid MDP, this excess probability must be distributed among the states of S_N according to some specified ***augmentation distribution*** $q_j(i, a, r, N)$,

where

$$\sum_j q_j(i, a, r, N) = 1 \text{ for each } (i, a, r, N).$$

The quantity $q_j(i, a, r, N)$ specifies what portion of the excess probability P_{ir}^a is redistributed to state $j \in S_N$.

Definition: The approximating sequence $\{\Delta_N\}$ is an

augmentation-type approximating sequence (ATAS) if the approximating distributions are defined as follows:

$$P_{ij}^a(N) = P_{ij}^a + \sum_{r \notin S_N} P_{ij}^a q(i, a, r, N)$$

Notes:

- The original probabilities on S_N are *never* decreased, but may be augmented by addition of portions of excess probability.
- Often it is the case that there is some *distinguished state* z such that for each (i, a, r, N) , $q_z(i, a, r, N) = 1$
(That is, all excess probability is sent to the distinguished state.)

**A
u
g
m
e
n
t
a
t
i
o
n

P
r
o
c
e
d
u
r
e**

Infinite Horizon Case

For the discounted-cost MDP Δ with infinite horizon, and **infinite** state space S , let

$$V_\beta(i) = \min_{a \in A_i} \left\{ C_i^a + \beta \sum_j P_{ij}^a V_\beta(j) \right\}, \quad \forall j \in S$$

Suppose we have an *approximating sequence* $\{\Delta_N\}$, with corresponding optimal values V_β^N

Major questions of interest:

- When does $\lim_{N \rightarrow \infty} V_\beta^N(i) = V_\beta(i) < +\infty$?
- If π^N is the optimal policy for Δ_N , when does π^N converge to an optimal policy for Δ ?

*Infinite Horizon Discounted Cost Assumption **DC(β)**:*

For $i \in S$ we have

$$\limsup_{N \rightarrow \infty} V_\beta^N(i) \equiv W_\beta(i) < +\infty$$

and

$$W_\beta(i) \leq V_\beta(i)$$

Theorem (Sennott, page 76):

The following are equivalent:

- $\lim_{N \rightarrow \infty} V_\beta^N = V_\beta < +\infty$
- Assumption **DC(β)** holds.

If one (& therefore both) of these conditions are valid, and $\{\pi_\beta^N\}$ is an optimal stationary policy for Δ_N . Then any limit point of the sequence is optimal for Δ .

The following theorem of Sennot (p. 77) gives a sufficient condition for **DC(β)** to hold (and hence for the convergence of the approximating sequence method):

Theorem:

Assume that there exists a finite constant B such that $C_i^a \leq B$ for every $i \in S$ and $a \in A_i$. Then **DC(β)** is valid for $\beta \in (0,1)$

Example:

Inventory Replenishment

Consider again our earlier application to inventory replenishment:

- ◆ The daily demand is random, with Poisson distribution having mean of 3 units.
- ◆ The inventory on the shelf (the *state*) is counted at the end of each business day, and a *decision* is then made to raise the inventory level to S at the beginning of the next business day.
- ◆ There is a fixed cost $A=10$ of placing an order, a holding cost $h=1$ for each item in inventory at the end of the day, and a penalty $p=5$ for each unit backordered.

We imposed limits of 7 units of stock-on-hand and 3 backorders, and found that the policy which minimizes the *expected cost/day* is of type $(s, S) = (2, 6)$, i.e., if the inventory position is 2 or less, order enough to bring the inventory level up to 6.

Consider the problem with *infinitely-many states*, i.e.,

$$S = \{-\infty, \dots, -2, -1, 0, 1, 2, 3, 4, \dots, +\infty\}$$

and the objective of minimizing the *discounted cost*, with discount factor

$$\beta = \frac{1}{1 + 0.20} = 0.833333.$$

What is the optimal replenishment policy?

Approximating Sequence Method

N = 1

To define the first MDP in the sequence, Δ_1 , use state space

$$S_1 = \{-2, -1, 0, 1, 2, \dots 6\},$$

i.e., assume a limit of 2 backorders and 6 units in stock. The optimal policy is $(s, S) = (2, 6)$:

State	Action	V
BO= two	SOH= 6	72.3583
BO= one	SOH= 6	57.3583
SOH= zero	SOH= 6	52.3583
SOH= one	SOH= 6	53.3583
SOH= two	SOH= 2	52.4908
SOH= three	SOH= 3	50.4510
SOH= four	SOH= 4	49.2100
SOH= five	SOH= 5	48.5763
SOH= six	SOH= 6	48.3583

N = 2

We now increase the state space to

$$S_2 = \{-3, -2, -1, 0, 1, 2, \dots 6, 7\},$$

i.e., assume a limit of 3 backorders and 7 units in stock, and find that the optimal policy is **(s, S) = (2, 7)**:

State	Action	v
BO= three	SOH= 7	98.2503
BO= two	SOH= 7	73.2503
BO= one	SOH= 7	58.2503
SOH= zero	SOH= 7	53.2503
SOH= one	SOH= 7	54.2503
SOH= two	SOH= 7	55.2503
SOH= three	SOH= 3	53.2667
SOH= four	SOH= 4	51.3011
SOH= five	SOH= 5	50.4785
SOH= six	SOH= 6	50.2025
SOH= seven	SOH= 7	50.2503

N = 3

We now increase the state space to $S_3 = \{-4, -3, -2, -1, 0, 1, 2, \dots 7, 8\}$, i.e., assume a limit of 4 backorders and 8 units in stock, and find that the optimal policy is $(s, S) = (2, 8)$:

State	Action	v
BO= four	SOH= 8	130.6728
BO= three	SOH= 8	95.6728
BO= two	SOH= 8	70.6728
BO= one	SOH= 8	55.6728
SOH= zero	SOH= 8	50.6728
SOH= one	SOH= 8	51.6728
SOH= two	SOH= 8	52.6728
SOH= three	SOH= 3	51.8500
SOH= four	SOH= 4	49.3778
SOH= five	SOH= 5	48.4689
SOH= six	SOH= 6	48.2269
SOH= seven	SOH= 7	48.3086
SOH= eight	SOH= 8	48.6728

N = 4

We now increase the state space to $S_4 = \{-5, \dots, -1, 0, 1, 2, \dots, 9, 10\}$, and find that the optimal policy is $(s, S) = (2, 10)$:

State	Action	v
BO= five	SOH= 10	176.7718
BO= four	SOH= 10	131.7718
BO= three	SOH= 10	96.7718
BO= two	SOH= 10	71.7718
BO= one	SOH= 10	56.7718
SOH= zero	SOH= 10	51.7718
SOH= one	SOH= 10	52.7718
SOH= two	SOH= 10	53.7718
SOH= three	SOH= 3	53.5004
SOH= four	SOH= 4	50.7828
SOH= five	SOH= 5	49.8438
SOH= six	SOH= 6	49.6259
SOH= seven	SOH= 7	49.7289
SOH= eight	SOH= 8	50.1051
SOH= nine	SOH= 9	50.7841
SOH= ten	SOH= 10	51.7718

N = 5 Increase the state space to $S_5 = \{-6, \dots, -1, 0, 1, 2, \dots 11, 12\}$.

The optimal policy is again $(s, S) = (2, 10)$:

<u>State</u>	<u>Action</u>	<u>v</u>
BO= six	SOH= 10	231.8900
BO= five	SOH= 10	176.8900
BO= four	SOH= 10	131.8900
BO= three	SOH= 10	96.8900
BO= two	SOH= 10	71.8900
BO= one	SOH= 10	56.8900
SOH= zero	SOH= 10	51.8900
SOH= one	SOH= 10	52.8900
SOH= two	SOH= 10	53.8900
SOH= three	SOH= 3	53.7796
SOH= four	SOH= 4	50.9538
SOH= five	SOH= 5	49.9933
SOH= six	SOH= 6	49.7723
SOH= seven	SOH= 7	49.8706
SOH= eight	SOH= 8	50.2390
SOH= nine	SOH= 9	50.9098
SOH= ten	SOH= 10	51.8900
SOH= eleven	SOH= 11	53.1630
SOH= twelve	SOH= 12	54.7082

N = 6 Increase the state space to $S_5 = \{-7, \dots, -1, 0, 1, 2, \dots 11, 15\}$.

The optimal policy is again $(s, S) = (2, 10)$:

State	Action	v
BO= seven	SOH= 10	296.9292
BO= six	SOH= 10	231.9292
BO= five	SOH= 10	176.9292
BO= four	SOH= 10	131.9292
BO= three	SOH= 10	96.9292
BO= two	SOH= 10	71.9292
BO= one	SOH= 10	56.9292
SOH= zero	SOH= 10	51.9292
SOH= one	SOH= 10	52.9292
SOH= two	SOH= 10	53.9292
SOH= three	SOH= 3	53.8742
SOH= four	SOH= 4	51.0097
SOH= five	SOH= 5	50.0426
⋮	⋮	⋮
SOH= fourteen	SOH= 14	58.5790
SOH= fifteen	SOH= 15	60.8442

The optimal policies have converged to $(s, S) = (2, 10)$

Finite Horizon Case

For the MDP Δ with **finite** horizon n and **infinite** state space S , let

$$v_{\beta,n}(i) = \min_{a \in A_i} \left\{ C_i^a + \beta \sum_j P_{ij}^a v_{\beta,n-1}(j) \right\}, \quad \forall j \in S, n \geq 1$$

Suppose we have an *approximating sequence* $\{\Delta_N\}$, with

corresponding optimal values $v_{\beta,n}^N$

Major questions of interest:

- When does $\lim_{N \rightarrow \infty} v_{\beta,n}^N(i) = v_{\beta,n}(i)$?
- If π^N is the optimal policy for Δ_N , when does π^N converge to an optimal policy for Δ ?

Finite Horizon Assumption FH(β, n):

For $i \in S$ we have

$$\limsup_{N \rightarrow \infty} v_{\beta,n}^N \equiv w_{\beta,n} < +\infty$$

and

$$w_{\beta,n}(i) \leq v_{\beta,n}(i)$$

Theorem (Sennott, page 43):

Let $n \geq 1$ be fixed. The following are equivalent:

- $\lim_{N \rightarrow \infty} v_{\beta,n}^N = v_{\beta,n} < +\infty$
- Assumption **FH(β, n)** holds.

The following theorem of Sennott (p. 45) gives a sufficient condition for **FH(β, n)** to hold (and hence for the convergence of the approximating sequence method):

Theorem:

Suppose that there exists a finite constant **B** such that

$$C_i^a \leq B$$

$$F_i \leq B$$

where F_i is the terminal cost of state $i \in S$. Then **FH(β, n)** holds for all β and $n \geq 1$.