

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dennis-bricker@uiowa.edu A machine operator has responsibility for four semi-automatic machines.

While processing jobs, the machines require no attention from the operator.

When a job is complete, the operator must

- 1) Unload the old job
- 2) Load the new job
- 3) Restart the machine

Average Time Req'd
$$\frac{1}{\mu_1}$$
=15 seconds $\frac{1}{\mu_2}$ =20 seconds $\frac{1}{\mu_3}$ =10 seconds Total $\frac{45}{45}$ seconds

Assuming that the time for each of the three tasks has exponential distribution, we wish to compute

- Steadystate distribution of number of machines in operation
- Average utilization of machines

for jobs with exponentially-distributed processing time, where the mean is 5 minutes

Mean service time is $\sum\limits_{i=1}^3 \sqrt[4]{\mu_i}=45$ seconds Variance of service time is $\sum\limits_{i=1}^3 \left(\sqrt[4]{\mu_i}\right)^2=725$

i.e., standard deviation is 26.925824 seconds, substantially less than 45, the standard deviation of exponential dist'n with mean 45 sec.

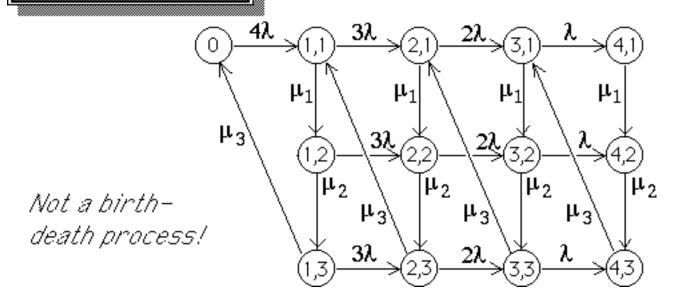
If $\mu_1 = \mu_2 = \mu_3 = \mu$, then the service time has Erlang-3 probability distribution.

Continuous-Time Markov Chain

Define states:

- (0) all machines in operation
- (i,j) i machines out of operation with operator currently performing task j

Continuous-Time Markov Chain



The 13 States of the C-T Markov Chain

i	j	t	
1234567890 1123 13	0111222333444	0123123123123	

where i = state number,

j = # customers in system, and

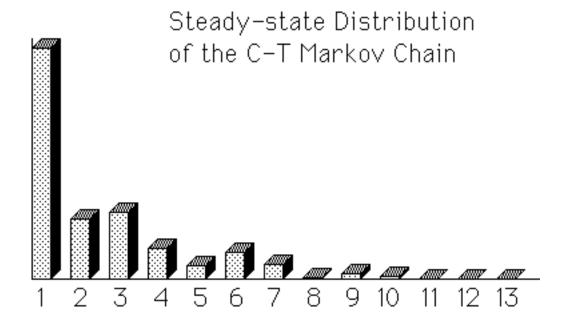
t = task currently being performed

Transition Rate Matrix

	1	2	3	4	5	6	7	8	9	10	11	12	13
1 2 3 4 5 6 7 8 9	0600000	0.8 -4.6 0 0 0 0	0 4	0 0 3 -6.6	0.6	0 0.6 0 4 -3.4 0	0.6 0 3 6.4 0	0 0 0 0 0.4 0	0 0 0 0 0 0 0.4	0 0 0 0 0 0 0 0.4 0 3 -6.2	0 0 0 0 0 0 0 0 0 0 0 0 0	00000000	0 0 0 0 0 0 0 0 0
10 11 12 13	ŏ 0 0 0	0 0 0	ŏ 0 0 0	ŏ 0 0 0	6 0 0 0	Ŏ O O	ŏ 0 0 0	Ŏ O O 6	-3.2 0 0 0	-6.2 0 0	0 -4 0 0	0.2 0 4 -3 0	Ŏ.2 O 3 −6

Steady-State Distribution

i	j	t	PI
1 2 3 4 5 6 7 8 9 0 11 12 13	0111222333444	0123123123123	0.501827 0.132482 0.147203 0.066910 0.029394 0.060558 0.034660 0.003982 0.012547 0.008307 0.000199 0.001102 0.000828

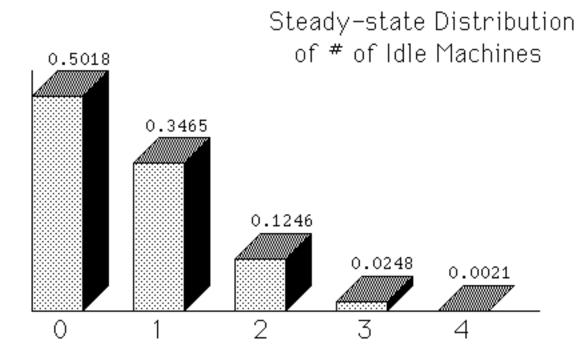


Distribution of # jobs in the System

j	P
0	0.501827
1	0.346595
2	0.124612
3	0.024837
4	0.002129

Mean number of jobs in system = 0.6788461127

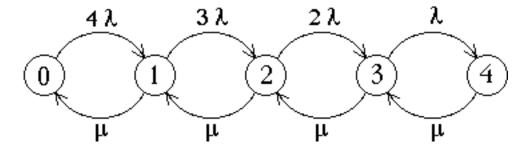
That is, an average of 0.6788 machines are idle at any time, a utilization of 83.03%



Suppose that we use the M/M/1/N/N "approximation" to this problem.

The variance of the service time of the M/M/1/N/N system is larger.

Birth-Death Model



M/M/1/N/N

Steady-State Distribution

with
$$\lambda = \frac{1}{5}$$
 per minute

$$\mu = \frac{4}{3}$$
 per minute

i	Pi		
0	0.509385		
1	0.305631		
2	0.137534		
3	0.041260		
4	0.006189		

The mean number of customers in the system (including the one being served) is: 0.7292361766

The average arrival rate of customers is 0.6541527647

Using Little's formula, the average time spent in the system, per customer, is W = 1.114779629

Expected utilization =

Suppose that expected processing time is 3 minutes,

rather than 5 minutes,

Distribution of # jobs in the System

i.e.,
$$\lambda = \frac{1}{3}$$

using the original model, i.e., not the birth-death model

j	P
0	0.291087
1	0.366554
2	0.242240
3	0.087166
4	0.012954

Mean number of jobs in system = 1.16434698

Expected utilization =
$$\frac{4-1.1643}{4}$$
 = 70.89%

M/M/1/N/N

Steady-State Distribution

with
$$\lambda = 1/3$$
 per minute

$$\mu = \frac{4}{3}$$
 per minute

i	Pi
0	0.310680
1	0.310680
2	0.233010
3	0.116505
4	0.029126

The mean number of customers in the system (including the one being served) is: 1.242718447

The average arrival rate of customers is 0.9190938511

Using Little's formula, the average time spent in the system, per customer, is W = 1.352112676

Expected utilization =

Suppose that expected processing time is 1 minute,

i.e.,
$$\lambda = \frac{1}{10}$$

Distribution of # jobs in the System

j	P
0	0.724170
1	0.233303
2	0.038766
3	0.003612
4	0.000149

Mean number of jobs in system = 0.3222666048

Expected utilization =
$$\frac{4-0.32227}{4}$$
 = 91.93 %

M/M/1/N/N

Steady-State Distribution

with
$$\lambda = 1/10$$
 per minute

$$\mu = \frac{4}{3}$$
 per minute

i	Pi
01234	0.725487 0.217646 0.048970 0.007346 0.000551

The mean number of customers in the system (including the one being served) is: 0.3398271981

The average arrival rate of customers is 0.3660172802

Using Little's formula, the average time spent in the system, per customer, is W = 0.9284457769

Expected utilization =

$$\frac{4-0.339827}{4} = 91.5\%$$

Summary: Expected Utilization, using the 2 models

λ	M/M/1/N/N	M/E ₃ /1/N/N
1/3	68.93%	70.89%
1/5	81.77%	83.03%
1/10	91.5%	91.93 %