
©Dennis Bricker, 2001
Dept of Industrial Engineering
The University of Iowa

DECOMPOSITION

Consider the Two-stage stochastic LP with recourse:

$$
\begin{aligned}
& \text { Minimize } c x+\sum_{k=1}^{K} p_{k} Q_{k}(x) \\
& \text { subject to } x \in X
\end{aligned}
$$

where, for example, the feasible set of first-stage decisions is defined by

$$
X=\left\{x \in R^{n}: A x=b, x \geq 0\right\}
$$

Here k indexes the finitely-many possible realizations of a random vector ξ, with p_{k} the probability of realization k .

The first-stage variables x are to be selected before ξ is observed.

Then the set of second-stage decision variables y_{k} are to be selected, after x has been selected and the $\mathrm{k}^{\text {th }}$ realization of ξ is observed.

The cost of the second stage when scenario k occurs is

$$
Q_{k}(x)=\text { Minimum }\left\{q_{k} y: W_{k} y=h_{k}-T_{k} x, y \geq 0\right\}
$$

That is, y is a recourse which must be chosen so as to satisfy some linear constraints in the least costly way.

Note that, in general,

- the coefficient matrices T and W ,
- the right-hand-side vector h, and
- the second-stage cost vector q
are all random.

We assume that recourse is complete,
i.e., for any choice of x and realization ξ, the set

$$
Y_{k} \equiv\left\{y: W_{k} y=h_{k}-T_{k} x, y \geq 0\right\} \neq \varnothing
$$

(This may require the introduction of artificial variables with large costs.)

The objective is to minimize the expected total costs of first and second stages.

The deterministic equivalent $L P$ is a large-scale problem which simultaneously selects

- the first-stage variables x and
- the second-stage variables y_{k} for every realization k

$$
\begin{aligned}
& \text { P: Find } Z=\text { minimum } c x+\sum_{k=1}^{K} p_{k} q_{k} y_{k} \\
& \text { subject to } \\
& T_{k} x+W y_{k}=h_{k}, k=1, \ldots K ; \\
& x \in X \\
& y_{k} \geq 0, k=1, \ldots K
\end{aligned}
$$

This can be an extremely large LP, with
$K \times n_{2}$ variables and $K \times m_{2}$ constraints.

Benders' Decomposition

Benders' partitioning--known also in stochastic programming as the "L-Shaped Method"--
achieves separability of the second stage decisions, that is, a separate LP is solved for each of the K scenarios.

Benders' partitioning was introduced by J.F. Benders for solving mixed-integer LP problems, that is, LP problems where some
of the variables are restricted to integers:
Benders, J. F. (1962). "Partitioning Procedures for Solving Mixed-Variables Programming Problems." Numerische Mathematik 4: 238-252.

The equivalent "L-Shaped Method" was later introduced
independently by van Slyke \& Wets for solving stochastic LP with
Recourse (SLPwR) problems:
Van Slyke, R. M. and R. J.-B. Wets (1969).
"L-Shaped linear programs with applications to optimal control and stochastic programming."
SIAM Journal of Applied Mathematics 17: 638-663.

In both cases, the central idea is to partition the variables into 2 sets
(MIP: integer and continuous variables) or
(SLPwR: $1^{\text {st }}$ stage $\& 2^{\text {nd }}$ stage variables) and to project the problem onto the first set of variables.

- MIP: Minimize $\underset{x \in X}{ } \mathrm{cx}+V(x)$ where $V(x)=$ optimal value of continuous LP after integer variables x have been fixed.
- SLPwR: $\underset{x \in X}{\operatorname{Minimize}} c x+Q(x)$ where $Q(x)=$ minimal expected cost of second stage when first-stage variables x have been fixed.

Given a first-stage decision x_{0}, define a function $Q_{k}\left(x_{0}\right)$ equal to the optimum of the second stage for each scenario $\mathrm{k}=1, \ldots \mathrm{~K}$:

$$
Q_{k}\left(x_{0}\right)=\min q_{k} y_{k}
$$

subject to

$$
W y_{k}=h_{k}-T_{k} x_{0}
$$

$$
y_{k} \geq 0
$$

Then $P\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{k} p_{k} Q_{k}\left(x_{0}\right)$ provides us with an upper bound on the optimal value Z.

If, as before, we introduce the variables x_{k} for each scenario k , together with the nonanticipativity constraints, we obtain the second-stage problem for scenario k ,

Minimize $q_{k} y_{k}$
subject to

$$
\begin{aligned}
& T_{k} x_{k}+W y_{k}=h_{k}, \\
& x_{k}=x_{0}, \\
& y_{k} \geq 0
\end{aligned}
$$

whose linear programming dual is the linear program
Maximize $h_{k} \pi_{k}+x_{0} \lambda_{k}$
subject to:

$$
\begin{aligned}
& \pi_{k} T_{k}+\lambda_{k} I=0 \\
& \pi_{k} W \leq q_{k}
\end{aligned}
$$

It is not necessary to introduce the variables x_{k}, but it is done in anticipation of later defining a cross-decomposition algorithm, which is a hybrid of Benders' decomposition and Lagrangian relaxation.

We can eliminate λ_{k} (the dual variables for the constraint $x_{k}=x_{0}$) by using the equality constraint to obtain $\lambda_{k}=-\pi_{k} T_{k}$ and

$$
Q_{k}\left(x_{0}\right)=\operatorname{Max}\left(h_{k}-T_{k} x_{0}\right) \pi_{k}
$$

subject to

$$
\pi_{k} W \leq q_{k}
$$

The original problem now reduces to

$$
Z=\underset{x_{0} \in X}{\operatorname{Minimize}} c x_{0}+\sum_{k=1}^{K} p_{k} Q_{k}\left(x_{0}\right)
$$

Denote by $\Pi_{k}=\left\{\pi_{k}: W^{T} \pi_{k} \leq q_{k}\right\}$ the polyhedral feasible region of the second-stage problem for scenario k .

Denote by $\hat{\pi}_{k}^{i}$ the $\mathrm{i}^{\text {th }}$ extreme point of $\Pi_{k}, i=1,2, \ldots \mathrm{I}_{\mathrm{k}}$.

By enumerating the large (but finite) number of extreme points of Π_{k}, we can write

$$
Q_{k}\left(x_{0}\right)=\max _{i=1, \ldots I_{k}}\left\{\hat{\pi}_{k}^{i}\left(h_{k}-T_{k} x_{0}\right)\right\}=\max _{i=1, \ldots I_{k}}\left\{\hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}\right\}
$$

where $\lambda_{k}^{i}=-\hat{\pi}_{k}^{i} T_{k}$ and $\hat{\alpha}_{k}^{i}=\hat{\pi}_{k}^{i} h_{k}$.
(Note that this demonstrates that $Q_{k}\left(x_{0}\right)$ is a piecewise-linear convex function.)

Benders' (Complete) Master Problem then uses this representation of $Q_{k}\left(x_{0}\right)$ to provide an alternate method for evaluating Z, namely

$$
\begin{aligned}
& Z=\operatorname{Min} c x_{0}+\sum_{k=1}^{K} p_{k} \theta_{k} \\
& \text { subject to } x_{0} \in X, \text { and } \\
& \theta_{k} \geq \hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}, \mathrm{i}=1, \ldots \mathrm{I} ; \mathrm{k}=1, \ldots \mathrm{~K}
\end{aligned}
$$

While it is possible in principle to solve the problem using
Benders' Complete Master Problem, in practice the magnitude of the number of dual extreme points makes it prohibitively expensive.

However, if a subset of the dual extreme points of Π_{k} are available, e.g., $\hat{\pi}_{k}^{i}, i=1, \ldots M_{k}$ where $M_{k}<I_{k}$, then we obtain an underestimate of $Q_{k}\left(x_{0}\right)$, which we denote by

$$
\underline{Q}_{k}\left(x_{0}\right)=\max _{\mathrm{i}=1, \ldots . \mathrm{M}_{\mathrm{k}}}\left\{\hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}\right\}
$$

Thus, by making use of dual information obtained after M evaluations of $Q_{k}\left(x_{0}\right)$, we obtain a Partial Master Problem,

$$
\begin{aligned}
& \Phi_{\mathrm{M}}=\operatorname{Min} c x_{0}+\sum_{k=1}^{K} p_{k} \theta_{k} \\
& \text { subject to } x_{0} \in X, \text { and } \\
& \theta_{k} \geq \hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}, \mathrm{i}=1, \ldots \mathrm{M} ; \mathrm{k}=1, \ldots \mathrm{~K}
\end{aligned}
$$

which provides a lower bound on the solution of Z.

Benders' algorithm solves the current Partial Master Problem, obtaining

- x_{0} (a "trial solution") and
- an underestimate $\sum_{k=1}^{K} p_{k} \underline{Q}_{k}\left(x_{0}\right)$ of the associated expected second-stage cost.

The actual expected second-stage cost, i.e., $\sum_{k=1}^{K} p_{k} Q_{k}\left(x_{0}\right)$, is then evaluated by solving the second-stage problem for each scenario. Additional constraints are added to the Partial Master Problem to complete the iteration.

At each iteration of Benders' algorithm, then,

- the subproblem solution

$$
P\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{K} p_{k} Q_{k}\left(x_{0}\right)
$$

provides an upper bound for Z, and

- the Partial Master Solution

$$
\Phi_{M}=\underline{P}\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{K} p_{k} \underline{Q}_{k}\left(x_{0}\right)
$$

provides a lower bound for Z.

Benders' Algorithm-- "Uni-cut" Version

In the uni-cut version, at each iteration i the K constraints

$$
\theta_{k} \geq \hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}, \mathrm{k}=1, \ldots \mathrm{~K}
$$

are aggregated before adding them to the Partial Master

Problem:

$$
\begin{aligned}
& Z=\operatorname{Min} c x_{0}+\theta \\
& \text { subject to } x_{0} \in X, \text { and } \\
& \theta \geq \sum_{k=1}^{K} p_{k}\left[\hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}\right], \mathrm{i}=1, \ldots \mathrm{I}
\end{aligned}
$$

Generally, more iterations are required, but there are fewer cuts (\& less computation) in each Partial Master Problem.

Benders' algorithm is as follows:

Step 0. Select an arbitrary $x_{0} \in X$. Initialize the upper bound

$$
\bar{Z}=+\infty \quad \text { and lower bound } \underline{Z}=-\infty .
$$

Note: This allows the user to make use of knowledge about his/her problem by using an initial "guess" at the solution.

Another alternative is to solve the Expected-Value LP problem to obtain the initial x_{0} :

$$
\begin{aligned}
& \text { Minimize } c x \\
& \text { subject to } A x=b \text {, } \\
& \begin{array}{l}
{\left[\sum_{k=1}^{K} p_{k} T_{k}\right] x+W y=\sum_{k=1}^{K} p_{k} h_{k}} \\
\qquad \mathrm{x} \geq 0
\end{array}
\end{aligned}
$$

Step 1a. Solve the primal subproblems to evaluate $Q_{k}\left(x_{0}\right)$ and the optimal dual variables $\pi_{k}, \mathrm{k}=1, \ldots \mathrm{~K}$ and compute $P\left(x_{0}\right)$.
$1 b$. For each scenario, generate an optimality cut.
1c. Uni-cut version: Aggregate the K optimality cuts and add to Benders' master problem.

Multi-cut version: Add each of the K optimality cuts to Benders' master problem.

1d. Update the upper bound, $\bar{Z}=\min \left\{\bar{Z}, P\left(x_{0}\right)\right\}$.
1e. If $\bar{Z}-\underline{Z} \leq \varepsilon$, STOP; else continue to Step 2 .

Step 2a. Solve the Partial Master Problem to obtain

- an optimal x_{0}, and
- an underestimate $\underline{P}\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{K} p_{k} \underline{Q}_{k}\left(x_{0}\right)$ of the expected cost $P\left(x_{0}\right)$.
$2 b$. Update the lower bound, $\underline{Z}=\max \left\{\underline{Z}, \underline{P}\left(x_{0}\right)\right\}$.
2c. If $\bar{Z}-\underline{Z} \leq \varepsilon$, STOP; else return to Step $1 a$.

At each iteration, the number of constraints (and therefore the size of the basis) of the Partial Master Problem increases, adding to the computational burden.

Furthermore, because constraints have been added, the solution of each partial master problem is generally infeasible in the partial master problem which follows.

For these reasons,
it is preferable to solve the dual of the partial master problem, which is formed by appending a column to the dual of the previous partial master problem,
so that the solution of the dual of the previous Partial Master Problem may serve as an initial basic feasible solution for the Partial Master Problem which follows.

If $X=\{x: A x=b, x \geq 0\}$, the linear programming dual of Benders'
Partial Master problem is

$$
\begin{gathered}
\Phi_{M}=M a x \quad b u+\sum_{k=1}^{K} \sum_{i=1}^{M} \hat{\alpha}_{k}^{i} v_{k}^{i} \\
\text { subject to } A^{T} u-\sum_{k=1}^{K} \sum_{i=1}^{M} \hat{\lambda}_{k}^{i} v_{k}^{i}=c \\
\sum_{i=1}^{M} v_{k}^{i}=p_{k}, \quad k=1, \ldots K \\
v_{k}^{i} \geq 0, \quad i=1, \ldots M ; k=1, \ldots K
\end{gathered}
$$

(The dual variable u is
unrestricted in sign if X is defined by $A x=b$, but nonnegative if $A x \geq b$, and nonpositive if $A x \leq b$.)

It can be shown that, in fact, this dual of Benders' Master Problem is identical to the Master Problem of Dantzig-Wolfe decomposition applied to the original large-scale deterministic equivalent LP!

