Disjoint Path 8/20/00 page 1 isjoint **P**ath an application of Problem Dagrangian elaxation This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, lowa City, lowa 52242 e-mail: dlbricker@icaen.uiowa.edu author

A set of products is to be scheduled on a machine. (Example: scheduling steel to be rolled (producing varying grades, widths, thicknesses, etc.) in a hot strip mill.)

For some pairs (i,j) of products, no major setup is required if product j immediately follows product i.

We wish to sequence the products so as to minimize the number of major setups required.

Represent the products by nodes in a network, with arc from node i to node j if node j requires no major setup when if follows node i.

The nodes on a path through the network correspond to a sequence of products which can be produced with a single major setup.

Any two such paths should be *disjoint*, i.e., should share no common products.

The Disjoint Path Problem:

Find the minimum number of disjoint paths which span all the nodes of a directed graph.

PROBLEM STATEMENT:

```
Given a directed graph (digraph) G = (N,A)
where N = \{1, 2, ..., n\} = set of nodes
A = set of arcs (A \subseteq N \times N)
```

Find the minimum number of paths such that every node $i \epsilon N$ lies on one (and only one) path

Example:

The optimal solution:

Mathematical Programming Model

Define the variables

$$X_{ij} = \begin{cases} 1 & \text{if arc}(i,j) \text{ is included on a path} \\ 0 & \text{otherwise} \end{cases}$$

That is, at most one arc enters node j, and at most one arc leaves node i

Thus, we have the constraints

$$\begin{array}{ll} \sum\limits_{j=1}^n \; X_{ij} \leq 1 & \mbox{for each } i \epsilon N \\ \\ \sum\limits_{i=1}^n \; X_{ij} \leq 1 & \mbox{for each } j \epsilon N \end{array}$$

However, the above constraints permit circuits,

We must add the constraint that the edges of the subgraph indicated by X form a "forest", i.e., a collection of trees.

(A tree is a subgraph containing no cycle.)

In order to facilitate defining the objective function (which is to be the number of paths) in terms of X,

Define a new node 0 Let G' = (N', A') where N' = N \cup {0} A' = A \cup { (0,1), (0,2), ... (0,n)} Let $X_{oi} = \begin{cases} 1 & \text{if node i is the beginning of a path} \\ 0 & \text{otherwise} \end{cases}$

The Optimization Problem: Minimize $\sum_{j=1}^{n} X_{0j}$ subject to X ε T = set of all spanning trees of G' Note that no inequality $\sum_{j=1}^{n} X_{ij} \leq 1 \quad \text{for each } i \epsilon N$ limits out-degree of node O $\sum_{i=0}^{n} X_{ij} = 1 \quad \text{for each } j \in \mathbb{N}$ $X_{ij} \in \{0,1\}$ for each $(i,j) \in A'$

$$\begin{array}{ll} \text{Minimize} & \sum\limits_{j=1}^{n} X_{0j} \\ \text{subject to} \\ X & \epsilon & \mathcal{T} = \text{set of all spanning trees of G'} \\ & \sum\limits_{j=1}^{n} X_{ij} \leq 1 & \text{for each i} \epsilon N \\ & \sum\limits_{j=1}^{n} X_{ij} \leq 1 & \text{for each i} \epsilon N \\ & \sum\limits_{i=0}^{n} X_{ij} = 1 & \text{for each j} \epsilon N \\ & X_{ij} & \epsilon & \left\{ 0,1 \right\} & \text{for each } (i,j) \epsilon A' \\ \end{array}$$

page 16

This problem appears to be a good candidate for Lagrangian Relaxation because of its structure:

- If we relax the spanning tree constraint, we obtain a relaxation which is an assignment problem
- If we relax the assignment constraints, we obtain a relaxation which is a minimum spanning tree problem

However, because the spanning tree constraint is not easily written as a system of explicit linear constraints, relaxing them is problematic!

Variable "splitting"

For each variable X_{ij} of the problem, define a variable Y_{ij} Require that X be a spanning tree, that Y be a feasible assignment, and that $X_{ij} = Y_{ij}$ for each i & j

for some specified weight α which distributes the cost between the two sets of variables ($0 \le \alpha \le 1$)

1

The Lagrangian Relaxation:
Minimize
$$\alpha \sum_{j=1}^{n} X_{0j} + (1 - \alpha) \sum_{j=1}^{n} Y_{0j} + \sum_{i=0}^{n} \sum_{j=1}^{n} \lambda_{ij} (X_{ij} - Y_{ij})$$

subject to
 $X \in T$
 $\sum_{j=1}^{n} Y_{ij} \leq 1$ for each $i \in \mathbb{N}$
 $\sum_{i=0}^{n} Y_{ij} = 1$ for each $j \in \mathbb{N}$
 $Y_{ij} \in \{0,1\}$ for each $(i,j) \in A^{n}$

$$\begin{array}{l} \hline \text{The Lagrangian Relaxation:} \\ \hline \text{Minimize } \sum\limits_{j=1}^{n} (\alpha + \lambda_{0j}) X_{0j} + \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \lambda_{ij} X_{ij} \\ & + \sum\limits_{j=1}^{n} (1 - \alpha - \lambda_{0j}) Y_{0j} - \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \lambda_{ij} Y_{ij} \\ & \text{subject to} \\ & X \ \varepsilon \ \mathcal{T} \\ & \sum\limits_{i=0}^{n} Y_{ij} \leq 1 \quad \text{for each } i \epsilon N \\ & \sum\limits_{i=0}^{n} Y_{ij} = 1 \quad \text{for each } j \epsilon N \\ & Y_{ij} \ \varepsilon \ \left\{ 0, 1 \right\} \quad \text{for each } (i,j) \epsilon \ A^{i} \end{array}$$

The Lagrangian Relaxation separates into two subproblems:

Minimum Spanning Tree Problem:

$$\Phi_{X}(\lambda) = \min \min \sum_{j=1}^{n} (\alpha + \lambda_{0j}) X_{0j} + \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} X_{ij}$$

subject to
$$X \in T$$

Assignment Problem n $\Phi_{\underline{Y}}(\lambda) = \min \min \sum_{i=1}^{n} (1 - \alpha - \lambda_{0j}) Y_{0j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} Y_{ij}$ subject to $\sum_{j=1}^{n} Y_{ij} \leq 1 \quad \text{for each } i \epsilon N$ $\sum_{i=0}^{n} Y_{ij} = 1 \quad \text{for each } j \in \mathbb{N}$ $Y_{ii} \in \{0,1\}$ for each $(i,j) \in A'$

For any matrix λ of Lagrangian multipliers. the sum of the optimal values of the two subproblems provides a lower bound on the optimal value of the original problem:

$$\Phi(\lambda) = \Phi_{x}(\lambda) + \Phi_{y}(\lambda) \leq Z^{*}$$

The Lagrangian Dual:

 $\Phi^* = \text{Maximum } \Phi_{-}(\lambda)$

The search for the optimal dual variables (${\it l}$) can be performed by *subgradient optimization*

The subgradient of the dual objective, $\Phi(\lambda)$ is the matrix $\Delta = \{ \delta_{ij} \}$ where $\delta_{ij} = (X_{ij} - Y_{ij})$

This is the direction in which to change $\, \lambda \,$

It may be that the optimal values of X and Y for the subproblems are never feasible paths.

For this reason, it is worthwhile to seek a feasible solution (which provides an upper bound) by means of a heuristic.

Two heuristic algorithms have been designed:

- a "greedy" algorithm
- a random-search algorithm

The "greedy" algorithm proceeds as follows:

Initially, the path set P is empty $(P \leftarrow \emptyset)$

- (a) If all nodes lie on a path, stop. Else, begin a new path by selecting the node i^{*} which minimizes λ_{0i} . Let $P \leftarrow P \cup \{(0,i^*)\}$
- (b) If { (i,j) : j does not lie on a path} is empty, go to step (a). Otherwise, let j*← argmin { λ_{ii} : j does not lie on a path}
- (c) Let $P \leftarrow P \cup \{(i^*, j^*)\}$ and $i^* \leftarrow j^*$. Return to step (b).

The random search algorithm finds several trial solutions, each constructed as in the greedy algorithm except:

In step (b), the choice of the next node to add to the path is random, with probability depending upon the current value of the Lagrange multipliers (λ_{ij}) . (Probabilities vary inversely as the multipliers, so that the choice tends to be "greedy".) 8/20/00

Randomly-generated problem (N=9)

The optimal solution:

Results of Lagrangian dual search (Spanning tree & assignment subproblems)

[@]D.L.Bricker, U. of Iowa, 1998

Other relaxations are possible:

Relax, in addition to those relaxed in the approach just presented, the constraint on the in-degree of each node:

 $\sum_{i=0}^{n} Y_{ij} = 1 \quad \text{for each } j \epsilon N$

The subproblem in Y is then a simple GUB (generalized upper bound, or "multiple choice") problem.

Replace the constraint that X is a tree with the stronger constraint that X is an "arborescence" (a directed tree with indegrees of the nodes \leq 1.) Then relax as in #2.

(The algorithm to compute a minimum spanning arborescence is O(n⁴). In practice, execution time for the APL code is about 15 times that for the spanning tree problem, for a 20-node problem.) Using relaxation #2 (spanning tree & GUB problems) (Using greedy heuristic)

Using relaxation #3 (spanning arborescence & GUB) (Using greedy heuristic)

[@]D.L.Bricker, U. of Iowa, 1998

Another randomly-generated problem, with N=20

[@]D.L.Bricker, U. of Iowa, 1998

The Adjacency Matrix:

	ч	0	ო	4	ഗ	۵	r	ω	σ	10	11	12		14		16	17	1 9	1 9	
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	ŏ	ō	ŏ	ž	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
3	1	1	ŏ	1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ō	ŏ
4	0	ō	1	ō	Ō	Ō	Ō	Ō	Ō	Ō	1	Ō	Ō	Ō	Ō	Ō	1	Ō	Ō	Ō
5	Ō	Ō	1	1	Ō	1	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō
6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0
10	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
18	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(The "dummy" node 0 & arcs from it are not shown.)

Relaxation #2 (spanning tree & GUB subproblems)

(Using random search heuristic with 5 trials)

[@]D.L.Bricker, U. of Iowa, 1998

Relaxation #3 (spanning arborescence & GUB subproblems) (Using random search heuristic with 5 trials)

This limited computational experience suggests that the additional effort required to find the minimum spanning arborescence is not effective.