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Models uncertainty in real-world systems that evolve dynamically
in time. 

Devised by the Russian mathematician A.A. Markov about 100
years ago to model the alternation of vowels and consonants in 
Pushkin's poetry.

Basic concepts

♦states

♦ transition between states

♦ "Markovian" property:  the future probabilistic behavior of the

system depends only upon the present state of the system and

not on any past history.
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Definition:

The stochastic process {Xn, n=0,1,2,…} with state space I is a

discrete-time Markov chain if, for each n=0,1,2,…

{ } { } , 1
1 0 0 1 1 1 ,| , ,... |

n

n n
n n n n n n i jP X j X i X i X i P X j X i p +
+ += = = = = = = =

for all possible values of i0, i1, …in+1.

We will consider only stationary (time-homogeneous) transition

probabilities, that is, one-step transition probabilities

{ }1 |n n ijP X j X i p+ = = =

independent of the time parameter n.
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Terminology & Notation:

♦ { }1 |ij n np P X j X i+= = = : (stationary) transition probability that the

system is next in state j if it is now in state i.

♦ ( ) { }0|n
ij np P X j X i= = = : n-stage probability, i.e., probability that,

at stage n, the system is in state j, given that it is initially in

state i.  Note that ( )1
ij ijp p≡ .

♦ ( )lim n
i kin

pπ
→∞

= , steadystate (equilibrium) distribution of the state of

the system, independent of the initial state k

 Note that the existence of the limiting steadystate distribution

depends upon characteristics of the Markov chain, as described

later!



DTMC page 4 ©D.Bricker, U.  of Iowa, 2001

Terminology & Notation, continued

♦ ijN = first-passage time (a random variable): number of stages

required to reach state j for the first time, given that the

process begins in state i

♦ ( ) { }n
ij ijf P N n= = : first-passage probability, the probability

distribution of ijN

♦ ( )

1

n
ij ij

n

f f
∞

=

≡ ∑ :  probability that a system which is initially in state i

will eventually be found in state j.

♦ { }ij ijm E N= : mean first-passage time, the expected value of ijN
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Define the n-step transition probabilities
( ) { }0|n
ij np P X j X i= = =

That is, ( )n
ijp is the probability that, if the system begins (at time

n=0) in state i, it will be found in state j after n transitions.

Note that generally ( ) ( )nn
ij ijp p≠ !  If, however, we form the matrix P

with element ijp in row i & column j, then we will find that ( )n
ijp is

the element in row i & column j of nP , i.e., the nth power of P.  This

is the essence of the Chapman-Kolmogoroff equations.
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For all stages n and m, and states i & j ∈ I,
( ) ( ) ( )n m n m
ij ik kj

k I

p p p+

∈

=∑

Essentially, this simply states that n m n mP P P+ = .

 Example:  (s,S) inventory replenishment system
State of system = inventory level, which is reviewed periodically, e.g., at end of

business day
Random demands result in transition probability distributions
If inventory ≤ s, the inventory is replenished so as to raise the inventory level to S.
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First-Passage Time ijN : (a random variable) the number of stages

required to reach state j for the first time, given that the system

begins in state i.

That is,

0 , ,   , andij k nN n X i X j k n X j= ⇔ = ≠ ∀ < =

Denote by ( ) { }n
ij ijf P N n= = the first-passage probabilities, i.e., the

probability distribution of ijN .

Note that ( ) ( )1 1
ij ij ijf p p= ≡ but that, in general, ( ) ( )n n

ij ijf p≤ .
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One may compute the probabilities ( )n
ijf recursively.

Given that the initial state 0X is i, express the probability that the system

is in state j at the nth-step by conditioning upon the state k at which the

system first reaches state j, using the "Law of Total Probability" which

states that
( ) { } { }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0

| first visit to state j is in stage k first visit to state j is in stage kn
ij n

k n

n k k n k k n n k k n
jj ij jj ij jj ij jj ij ij

k n k n k n

p P X j P

p f p f p f p f f
≤

− − −

≤ < <

= =

= × = × + = × +

∑

∑ ∑ ∑
Solve this equation for ( )n

ijf :

( ) ( ) ( ) ( ) ( )1wheren n n k k
ij ij jj ij ij ij

k n

f p p f f p−

<

= − ≡∑
Thus, the first-passage probabilities can be computed recursively, given

sufficient powers of the matrix P. 

Cf. (s,S) inventory replenishment system
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The expected value of the first-passage time is defined by the

infinite sum:

{ } ( )

0

n
ij ij ij

n

m E N nf
∞

=

≡ =∑

The mean first passage time can be computed approximately by

including a large number of terms in the sum. 

Fortunately there is another method which requires solving a finite

system of linear  equations.
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The mean first passage times can more conveniently be computed

by using the "Law of Total Expectation":

{ } { } { }

{ } { } { } { }

{ }

1 1

1 1 1 1

|

| |

1 1

ij ij
k I

ij ij
k j

ij kj ik
k j

E N E N X k P X k

E N X j P X j E N X k P X k

p E N p

∈

≠

≠

= = × =

= = = + = =

 = × + + × 

∑

∑

∑

That is,
{ } { }

1

ij ij ik kj ik
k j k j

ij ik kj
k j

E N p p E N p

m p m
≠ ≠

≠

= + +

= +

∑ ∑

∑

For fixed j, this gives us a system of n linear equations in n

variables,  mkj, k∈I, where n=|I|.
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 Cf. (s,S) inventory replenishment example.
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We will restrict our attention to Markov chains with a finite
number of states.

Define ( )

1

n
ij ij

n

f f
∞

=

≡ ∑ , the probability that the Markov chain will

eventually be found in state j if it begins in state i.

State i of a Markov chain may be classified as
♦recurrent if 1iif = , i.e., the system is certain to return to state i

if it begins in state i
♦ transient if 1iif < , i.e., there is positive probability that the

system, beginning in state i, fails to return to this state.
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Note:  "minimal" does not refer to the cardinality of the set…. two
minimal closed sets may have different cardinality!

A minimal closed set is also said to be irreducible.
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The concept of minimal closed set gives us another characterization
of recurrent states:
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Absorbing States
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If a Markov chain has absorbing states, the states might be

reordered so that the transition probability matrix P is of the form

0
Q R

P
I

 
=  
 

where the size of the identity matrix I is the number of absorbing

states.

When there are more than one absorbing state, a question which is

frequently of interest is

"If the system begins in a transient state  i,  what is the probability

that the system eventually reaches (and hence is absorbed) into

state j?"
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Absorption Probabilities

When there are r>0 absorbing states, the powers of the transition

probability matrix P will be of the form

( ) ( )

2 3 2
2 3

2 1 2 1

, , ,
0 0 0

0 0

n n n n
n

Q R Q R QR Q R QR Q R
P P P

I I I

Q R QR Q R Q R Q I Q Q Q R
P

I I

− −

   + + + 
= = =    
     

   + + + + + + + +
= =   
      

But the series

( )( )2 3 2 2 3 3I Q I Q Q Q I Q Q Q Q Q Q I− + + + + = − + − + − + − =

That is, the infinite series is the inverse of the difference (I-Q):

( ) 1 2 3I Q I Q Q Q−
− = + + + +
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Define the limit
1

1
0 0

lim lim
0 0

0

n
n k

n
k

n n

Q Q R ER A
P

I I
I

−

=
→∞ →∞

  
     = = =            

∑

where
0

k

k

E Q
∞

=

= ∑ .

That is, the square matrix nQ consists of the n-step transition

probabilities from a transient state to another transient state, and

the (n-r]×r matrix A=ER consists of the probabilities of absorption

into an absorbing state, beginning from a transient state.
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See examples:

♦Markov chain analysis of a multistage manufacturing system

with inspection and reworking.  What fraction of the parts

which begin the process are eventually scrapped?

♦ "Passing the Buck"-- what fraction of the operating expenses of

a service facility should be allocated to the production units?
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Periodicity
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The Unichain Assumption concerning a finite-state Markov chain:

The Markov chain has only one minimal closed set of recurrent

states and a (possibly empty) set of transient states.

Theorem

Let {Xn} be a finite-state aperiodic Markov chain satisfying the

Unichain Assumption.  Then there exists a probability distribution

π such that
( )lim   for all j=1,2,...nn
ij jn
p π

→∞
=
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Consider a finite-state aperiodic Markov chain satisfying the

Unichain Assumption.  Then the limiting distribution π in the

previous theorem satisfies the equilibrium conditions

1

for each j=1,2,...n
n

j k kj
k

pπ π
=

= ∑

or, in matrix representation,
Pπ π=

The vector x=0 satisfies these equilibrium conditions; furthermore,

if x is a solution, then any scalar multiple of x also satisfies the

equations.  However, adding the normalizing equation

1

1
n

j
j

π
=

=∑

uniquely determines the limiting distribution.
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The steadystate equations may be found by solving the system of

linear equations

( ) 0
1 1

T

i i
i i

P I Pπ π π
π π

= − = ⇒ = =  
∑ ∑

Notes:

♦ The coefficients in each row of the system are obtained from the columns

of P!

♦ The equations Pπ π= are not full row rank, and include one redundant

equation-- any one of the equations may be discarded.

♦ The system may be solved by Gauss elimination;  if extremely large,

Gauss-Seidel (successive overrelaxation, SOR) methods may be

advantageous.
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Example
Consider the Markov chain with transition probability matrix

0.4 0.5 0.1
0.3 0.2 0.5
0.6 0.2 0.2

P
 
 =  
  

The system of equations determining the steadystate distribution is

1 1 2 3 1 2 3

2 1 2 3 1 2 3

3 1 2 3 1 2 3

1 2 3 1 2 3

0.4 0.3 0.6 0.6 0.3 0.6 0
0.5 0.2 0.2 0.5 0.8 0.2 0

1 0.1 0.5 0.2 0.1 0.5 0.8 0
1 1

i
i

P
π π π π π π π

π π π π π π π π π
π π π π π π π π

π π π π π π

= + + − − = 
 = = + + − + − =  ⇒ ⇒  = = + + − − + =  
 + + = + + = 

∑
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Discarding (arbitrarily) the 1st equation and applying Gauss elimination:

0.5 0.8 0.2 0 1 1.6 0.4 0 1 1.6 0.4 0
0.1 0.5 0.8 0 0 0.66 0.84 0 0 1 ¯1.27273 0
1 1 1 1 0 2.6 0.6 1 0 0 3.90909 1

− − − −     
     − − ⇒ − ⇒     
          

1 1.6 0.4 0
0 1 ¯1.27273 0
0 0 1 0.25581

− 
 ⇒  
  

Then back-substitution yields the solution:

3

2 2

1 2 3

0.25581
1.27273 0.32558
1.6 0.4 0.41861

π
π π
π π π

=
 = =
 = − =


