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One of the systems of a communication satellite consists of four
unreliable components each of which are necessary for successful
operation of the satellite—the probabilities that a component survives
the planned lifetime of the satellite (i.e., the reliabilities) are shown
below:

R,=70% R,=85%  R;=75%  R,-88%

PR T N R S

T r=r=r
R, t R

................

Optimal Redundancy 11/19/2004 page 2 of 26



R,=70%  R,=85%  R;=75%  R,=88%

o TLow
.................................

Assuming that component failures are independent,
Reliability of system
= P{components 1 through 4 survive}
= P{#1 survives} x P{#2 survives} x P{#3 survives} x P{#4 survives}

=0.70 x 0.85 x 0.75 x 0.88 = 39.27%

This is an unacceptably low system reliability, and so redundant units

of one or more components will be used in the design.
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including redundant units!

Reliability of component #1 This assumes what is referred
= P{at least one unit survives} to as “hot standby’, i.e., a
= 1 — P{both units fail} standby unit may fail even

=1-0.30x0.30=91% before it is put into service!
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By using redundant units of each component, the system reliability

can be dramatically increased—for example:
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{R:i/?t)eirl?ty} =1-(0.30)° |x| 1-(0.15)" |x|1-(0.25)" | x[0.88]

=0.91x0.9775x0.984375%x0.88 = 77.0551%
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The problem faced by the designer is to maximize the system
reliability, subject to a restriction on the total weight of the system.
‘Component‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘

‘Weight(kg)‘ 1 ‘ 2 | 1 ‘ 3 ‘

Total weight must not exceed 12 kg.
(Total weight of one unit of each component is 7 kg, leaving 5 kg

for redundant units.)
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Reliability (%) vs. # redundant units

Component 1 unit 2 units 3 units
1 70 91 97.3
2 85 97.75 99.6625
3 75 93.75 98.4375
4 88 98.56 99.8272

We will assume that no more than three units of any component will

be included!
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Dynamic Programming Model

Stage: n component type
Decision: x, # of units of component n included in system

State: s, slack weight, i.e., # kg available
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We impose a sequential decision-making structure on the
problem by supposing that we consider the components one at a
time, deciding how many units to include based upon the

available weight capacity.

Component Component Component Component
— #4 #3 #2 #1 —

A 4
\ 4
A 4

Arbitrarily we will use a “backward” order in what follows!
That is, imagine that we first consider how many units of
component #4 are to be included when we begin with 12 kg of
available capacity, while component # 1 is the last to be

considered.
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Optimal Value Function
f.(s,) = maximum reliability of the subsystem consisting of
devices n, n-1, ... 1, if s, kg of available capacity

remains to be allocated.

Component Component Component Component
— #4 #3 #2 #1 —

A 4

A 4

A 4

Recursive definition of function

f.(s,)= mglgrsnvlvjm {(1— o )% o (80— WX, )}

n

f(s,) 1 i1fs,>0
20710 otherwise
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APL function definition

¥ Ze<F N;L
[1] A
[2] A Optimal redundancy 1o maximize relilability
[3] A
[4] 11f N=0
[5] g« {lpslpl),-BIG
[B] telse
[7] A Recursive definition of optimal walue functilon
[3] eeMax1imize ({(ps)pl)o.—{l-R[N])=x|x{F N-1)[TRANSITION s . -W[N]*x
[3] end 1t
v
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Component #1: reliability = 70%, weight = 1 kg.

Stage 1
s \ x: 1 2 3 | Maximum
1 | 0.7000 99.9999 99.9999] 0.7000
2 | 0.7000 0.9100 99.9999] 0.9100
3 | 0.7000 0.9100 0.9730] 0.9730
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Component #2: reliability = 80%, weight = 2 kg.

Stage 2

s \ x: 1 2 3 | Maximum
3 | 0.5600 99.9999 99.9999] 0.5600
4 | 0.7280 99.9999 99.9999] 0.7280
5 | 0.7784 0.6720 99.9999] 0.7784
6 | 0.7784 0.8736 99.9999] 0.8736
7 | 0.7784 0.9341 0.6944] 0.9341
8 | 0.7784 0.9341 0.9027| 0.9341

etc.

For example, suppose that we have 6 kg of capacity remaining, i.e., sz = 6, and we
choose to include 2 units of component #2. Then we obtain 97.75% reliability of

subsystem #2 and arrive at stage 1 (component #1) with 6-2x2=2 kg of capacity
remaining, so that we can achieve 91% reliability ( f1(2)=0.91 ) in subsystem #1.

Hence the subsystem of components 1&2 will have reliability 0.9775x0.91 = 0.8736

Optimal Redundancy 11/19/2004 page 13 of 26




Component #3: reliability = 75%, weight = 1 kg.

Stage 3

s \ x: 1 2 3 | Maximum
4 | 0.4200 99.9999 99.9999] 0.4200
5 ] 0.5460 0.5250 99.9999] 0.5460
6 | 0.5838 0.6825 0.5513] 0.6825
7 | 0.6552 0.7298 0.7166] 0.7298
8 | 0.7006 0.8190 0.7662] 0.8190
9 | 0.7006 0.8757 0.8600] 0.8757

etc.
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Component #4: reliability = 88%, weight = 3 kg.

Stage 4

s \ x: 1 2 3 | Maximum
7 | 0.3696 99.9999 99.9999] 0.3696
8 | 0.4805 99.9999 99.9999] 0.4805
9 | 0.6006 99.9999 99.9999] 0.6006
10 | 0.6422 0.4140 99.9999] 0.6422
11 | 0.7207 0.5381 99.9999] 0.7207
12 | 0.7706 0.6727 99.9999] 0.7706

Only the last row of this table need be computed to find the optimal
reliability with 12 kg of capacity!
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Summary of computations

Stage 2
Stage 4

Current Optimal Optimal Next
Current Optimal Optimal Next State Decision Value State
State Decision Value State cap 3 1 units 0.5600 cap 1
cap 7 1 units 0.3696 cap 4 cap 4 1 units 0.7280 <cap 2
cap 8 1 units 0.4805 cap 5 cap 5 1 units 0.7784 «cap 3
cap 9 1 units 0.6006 cap 6 cap 6 2 units 0.8736 cap 2
cap 10 1 units 0.6422 cap 7 cap 7 2 units 0.9341 cap 3
cap 11 1 units 0.7207 <cap 8 cap 8 2 units 0.9341 cap 4
cap 12 1 units 0.7706 cap 9

Stage 1
Stage 3

Current Optimal Optimal Next
Current Optimal Optimal Next State Decision Value State
State Decision Value State cap 1 1 units 0.7000 cap O
cap 4 1 units 0.4200 cap 3 cap 2 2 units 0.9100 cap O
cap 5 1 units 0.5460 cap 4 cap 3 3 units 0.9730 cap O
cap 6 2 units 0.6825 cap 4 cap 4 3 units 0.9730 cap 1
cap 7 2 units 0.7298 <cap 5 cap 5 3 units 0.9730 cap 2
cap 8 2 units 0.8190 cap 6 cap 6 3 units 0.9730 cap 3
cap 9 2 units 0.8757 <cap 7
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The maximum reliability, then, given a 12 kg weight

restriction, is f,(12) =77.06 %

By a “forward pass” through the tables, we can

determine the optimal design:

stage state
4 cap 12
3 cap 9
2 cap 7
1 cap 3
0 cap O

decision
1 units
2 units
2 units
3 units

That is, the optimal design includes 1 of component #4, 2

each of components #2 & #3, and 3 of component # 1.
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e What reduction in reliability would occur if the

weight restriction were 11 kg rather than 127

e What is the optimal design with a weight restriction

of 11 kg?
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Integer Programming Model
Define binary decision variables:
X, = 1 if n units of component i are included

in the system

Xy = 0 otherwise
Notation:
Component

1 Ri1 Rio Ri3
1 0.70 0.91 0.973
2 0.80 0.9775 | 0.996625
3 0.75 0.9375 | 0.984375
4 0.88 0.9856 | 0.998272

Objective:
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In order to linearize the objective, we will instead

maximize the logarithm of the reliability:

4 3
Maximize > » (InR,,)X
i=1 n=1
4 3
subject to Z W,n) <
i=1 n=1

X. =1 Vi=1234
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Component [n Ri1 [n Rip In Ris
i
1 -0.35667| 0.094311| 0.02737
2 -0.22314| 0.040822| 0.008032
3 -0.28768| 0.064539| 0.01575
4 -0.12783| 0.014505| 0.001729
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LINGO model:

SETS:
COMPONENT /7 A B C D/:
WEIGHT;
UNITS /7 1..3/;
LOG(COMPONENT ,UNITS): LNR, X;
ENDSETS

DATA:
WEIGHT =1 2 1 3;
WMAX = 12;
LNR = -0.35667 -0.094311 -0.027371
-0.22314 -0.040822 -0.0080322
-0.28768 -0.064539 -0.015748
-0.12783 -0.014505 -0.0017295; ! LNR 1s log of reliability;
ENDDATA

MAX = @SUM( COMPONENT(1): @SUM(UNITS(N) :LNRCI,N)*X(1,N))) :
@SUM( COMPONENT(1): @SUMCUNITS(N): WEIGHT(I)*N*X(1,N)))<= WMAX;
@FOR (COMPONENT(1):

@SUM (UNITS(N): X(1,N))=1; );

@FOR (COMPONENT(1):
@FOR (UNITS(N): @BIN (X(1,N)) ) );

LINDO model:
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MAX - .35667 X( A, 1) - .094311 X(
- .22314 X( B, 1) - .040822 X(

- .28768 X( C, 1) - .064539 X(
12783 X( D, 1) - .014505 X(

SUBJECT TO

2] X( A, 1) +

3] X
4] X
5] X
6] X
END

INTE 12

+ 4+ + e

A,
B,
C,
D,
2 XC A, 2) + 3 X(A, 3)
3) + X( C, 1) + 2 X( C,
2) + 9 X( D, 3) <= 12
XC A, 2) + X( A, 3)
X( B, 2) + X( B, 3)
X( C, 2) + X( C, 3)
X( D, 2) + X( D, 3)

2)
2)
2)
2)

027371 X( A, 3)
0080322 X( B, 3)
015748 X( C, 3)
0017295 X( D, 3)

+ 2 X( B, 1) + 4 X( B, 2)

2) + 3 X(C, 3 +3X(D, 1)

el
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Optimal Solution:

Objective value: - 0.2605620

Variable Value Reduced Cost

XC A, 3) 1.000000 0.2737100E-01
X( B, 2) 1.000000 0.4082200E-01
X(CC, 2) 1.000000 0.6453900E-01
X(C D, 1) 1.000000 0.1278300
Note that exp{ — 0.2605620) = 0.77062

which is in agreement with the dynamic programming

solution.
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#2 #3
#2 #3

Optimal Design
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