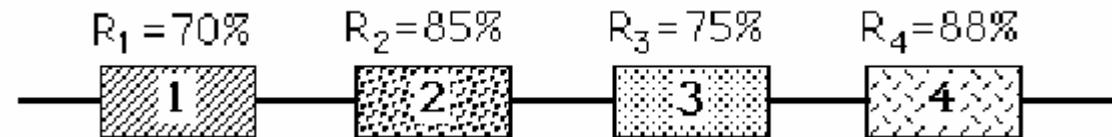


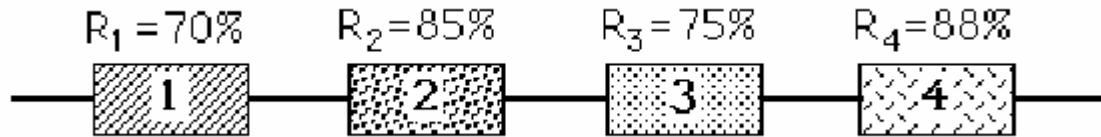
Optimal Redundancy to Maximize System Reliability

- *Dynamic Programming Model*
- *Integer Programming Model*

© D. L. Bricker
Dept of Mechanical & Industrial Engineering
The University of Iowa

One of the systems of a communication satellite consists of four unreliable components each of which are necessary for successful operation of the satellite—the probabilities that a component survives the planned lifetime of the satellite (i.e., the *reliabilities*) are shown below:





Assuming that component failures are independent,

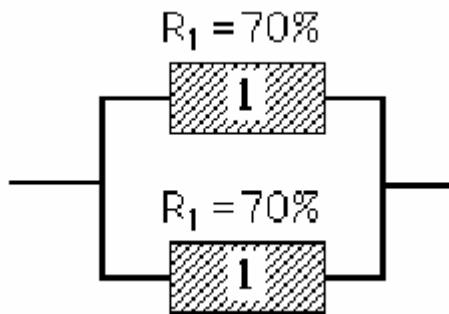
Reliability of system

$$= P\{\text{components 1 through 4 survive}\}$$

$$= P\{\#1 \text{ survives}\} \times P\{\#2 \text{ survives}\} \times P\{\#3 \text{ survives}\} \times P\{\#4 \text{ survives}\}$$

$$= 0.70 \times 0.85 \times 0.75 \times 0.88 = \mathbf{39.27\%}$$

This is an unacceptably low system reliability, and so redundant units of one or more components will be used in the design.



The reliability of a component may be increased by including redundant units!

Reliability of component #1

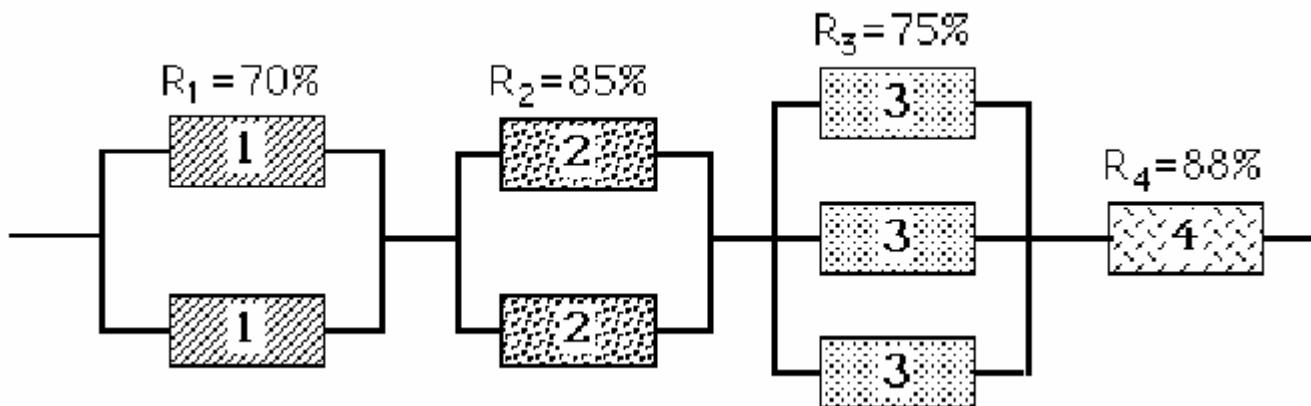
$$= P\{\text{at least one unit survives}\}$$

$$= 1 - P\{\text{both units fail}\}$$

$$= 1 - 0.30 \times 0.30 = 91\%$$

This assumes what is referred to as “hot standby”, i.e., a standby unit may fail even before it is put into service!

By using redundant units of each component, the system reliability can be dramatically increased—for example:



$$\begin{cases} \text{System} \\ \text{Reliability} \end{cases} = \left[1 - (0.30)^2 \right] \times \left[1 - (0.15)^2 \right] \times \left[1 - (0.25)^2 \right] \times [0.88] \\
 = 0.91 \times 0.9775 \times 0.984375 \times 0.88 = 77.0551\%$$

The problem faced by the designer is to maximize the system reliability, subject to a restriction on the total weight of the system.

Component	1	2	3	4
Weight (kg)	1	2	1	3

Total weight must not exceed 12 kg.

(Total weight of one unit of each component is 7 kg, leaving 5 kg for redundant units.)

Reliability (%) vs. # redundant units

Component	1 unit	2 units	3 units
1	70	91	97.3
2	85	97.75	99.6625
3	75	93.75	98.4375
4	88	98.56	99.8272

We will assume that no more than three units of any component will be included!

Dynamic Programming Model

Stage: n component type

Decision: x_n # of units of component n included in system

State: s_n slack weight, i.e., # kg available

We impose a sequential decision-making structure on the problem by supposing that we consider the components one at a time, deciding how many units to include based upon the available weight capacity.

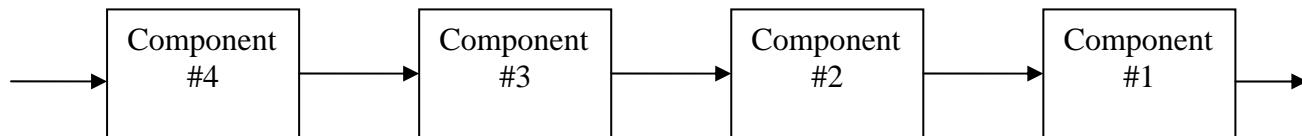


Arbitrarily we will use a “backward” order in what follows!

That is, imagine that we first consider how many units of component #4 are to be included when we begin with 12 kg of available capacity, while component #1 is the last to be considered.

Optimal Value Function

$f_n(s_n)$ = maximum reliability of the subsystem consisting of devices n, n-1, ... 1, if s_n kg of available capacity remains to be allocated.



Recursive definition of function

$$f_n(s_n) = \underset{1 \leq x_n \leq \frac{s_n}{w_n}}{\text{maximum}} \left\{ \left(1 - p_n^{x_n} \right) \times f_{n-1}(s_n - w_n x_n) \right\}$$

$$f_0(s_0) = \begin{cases} 1 & \text{if } s_0 \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

APL function definition

```
v z←F N;t
[1] A
[2] A Optimal redundancy to maximize reliability
[3] A
[4] :if N=0
[5]   z←((ρs)ρ1),-BIG
[6] :else
[7] A Recursive definition of optimal value function
[8]   z←Maximize (((ρs)ρ1)∘.-{(1-R[N])×x})×(F N-1)[TRANSITION s∘.-W[N]×x
[9] :endif
    v
```

Component #1: reliability = 70%, weight = 1 kg.

Stage 1				
s \ x:	1	2	3	Maximum
1	0.7000	0.99999	0.99999	0.7000
2	0.7000	0.9100	0.99999	0.9100
3	0.7000	0.9100	0.9730	0.9730

etc.

Component #2: reliability = 80%, weight = 2 kg.

Stage 2

$s \setminus x:$	1	2	3	Maximum
3	0.5600	99.9999	99.9999	0.5600
4	0.7280	99.9999	99.9999	0.7280
5	0.7784	0.6720	99.9999	0.7784
6	0.7784	0.8736	99.9999	0.8736
7	0.7784	0.9341	0.6944	0.9341
8	0.7784	0.9341	0.9027	0.9341

etc.

For example, suppose that we have 6 kg of capacity remaining, i.e., $s_2 = 6$, and we choose to include 2 units of component #2. Then we obtain 97.75% reliability of subsystem #2 and arrive at stage 1 (component #1) with $6-2\times2=2$ kg of capacity remaining, so that we can achieve 91% reliability ($f_1(2)=0.91$) in subsystem #1.

Hence the subsystem of components 1&2 will have reliability $0.9775\times0.91 = 0.8736$

Component #3: reliability = 75%, weight = 1 kg.

Stage 3

s \ x:	1	2	3	Maximum
4	0.4200	0.9999	0.9999	0.4200
5	0.5460	0.5250	0.9999	0.5460
6	0.5838	0.6825	0.5513	0.6825
7	0.6552	0.7298	0.7166	0.7298
8	0.7006	0.8190	0.7662	0.8190
9	0.7006	0.8757	0.8600	0.8757

etc.

Component #4: reliability = 88%, weight = 3 kg.

Stage 4

s \ x:	1	2	3	Maximum
7	0.3696	0.9999	0.9999	0.3696
8	0.4805	0.9999	0.9999	0.4805
9	0.6006	0.9999	0.9999	0.6006
10	0.6422	0.4140	0.9999	0.6422
11	0.7207	0.5381	0.9999	0.7207
12	0.7706	0.6727	0.9999	0.7706

Only the last row of this table need be computed to find the optimal reliability with 12 kg of capacity!

Summary of computations

Stage 4

Current State	Optimal Decision	Optimal Value	Next State
cap 7	1 units	0.3696	cap 4
cap 8	1 units	0.4805	cap 5
cap 9	1 units	0.6006	cap 6
cap 10	1 units	0.6422	cap 7
cap 11	1 units	0.7207	cap 8
cap 12	1 units	0.7706	cap 9

Stage 2

Current State	Optimal Decision	Optimal Value	Next State
cap 3	1 units	0.5600	cap 1
cap 4	1 units	0.7280	cap 2
cap 5	1 units	0.7784	cap 3
cap 6	2 units	0.8736	cap 2
cap 7	2 units	0.9341	cap 3
cap 8	2 units	0.9341	cap 4

Stage 3

Current State	Optimal Decision	Optimal Value	Next State
cap 4	1 units	0.4200	cap 3
cap 5	1 units	0.5460	cap 4
cap 6	2 units	0.6825	cap 4
cap 7	2 units	0.7298	cap 5
cap 8	2 units	0.8190	cap 6
cap 9	2 units	0.8757	cap 7

Stage 1

Current State	Optimal Decision	Optimal Value	Next State
cap 1	1 units	0.7000	cap 0
cap 2	2 units	0.9100	cap 0
cap 3	3 units	0.9730	cap 0
cap 4	3 units	0.9730	cap 1
cap 5	3 units	0.9730	cap 2
cap 6	3 units	0.9730	cap 3

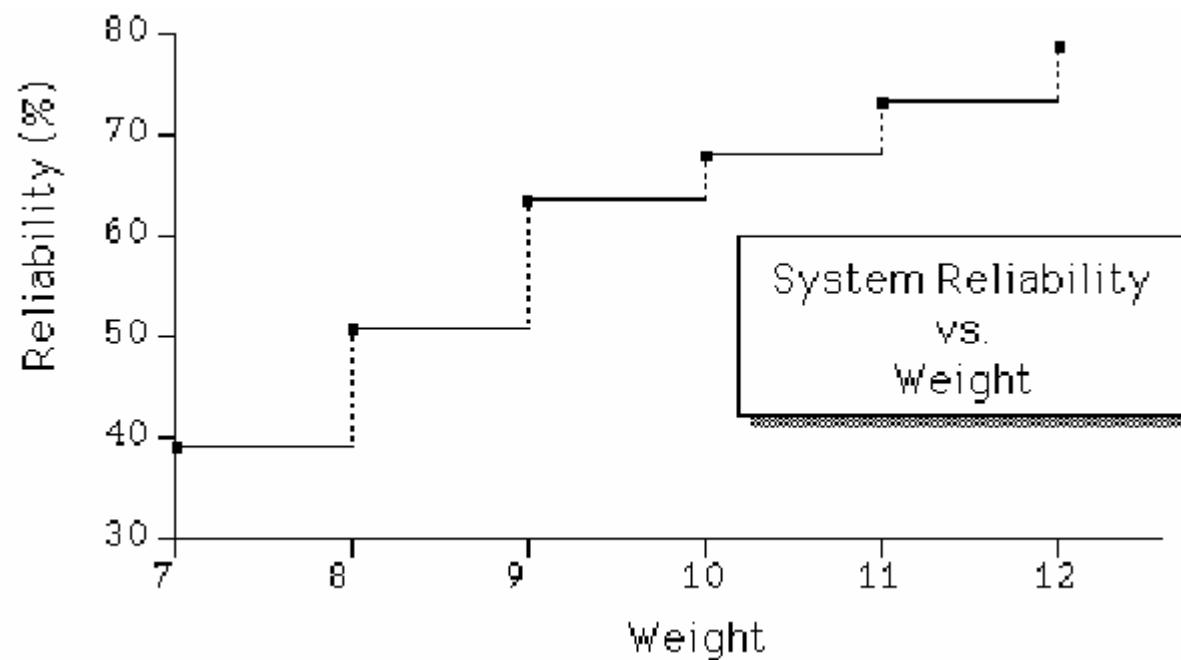
The maximum reliability, then, given a 12 kg weight restriction, is $f_4(12) = 77.06\%$

By a “forward pass” through the tables, we can determine the optimal design:

<u>stage</u>	<u>state</u>	<u>decision</u>
4	cap 12	1 units
3	cap 9	2 units
2	cap 7	2 units
1	cap 3	3 units
0	cap 0	

That is, the optimal design includes 1 of component #4, 2 each of components #2 & #3, and 3 of component #1.

- What reduction in reliability would occur if the weight restriction were 11 kg rather than 12?
- What is the optimal design with a weight restriction of 11 kg?



Integer Programming Model

Define *binary* decision variables:

X_{in} = 1 if n units of component i are included
in the system

X_{in} = 0 otherwise

Notation:

Component i	R_{i1}	R_{i2}	R_{i3}
1	0.70	0.91	0.973
2	0.80	0.9775	0.996625
3	0.75	0.9375	0.984375
4	0.88	0.9856	0.998272

Objective:

In order to linearize the objective, we will instead maximize the ***logarithm of the reliability***:

$$Maximize \quad \sum_{i=1}^4 \sum_{n=1}^3 (\ln R_{in}) X_{in}$$

subject to

$$\sum_{i=1}^4 \sum_{n=1}^3 (W_i n) X_{in} \leq W_{\max}$$

$$\sum_{n=1}^3 X_{in} = 1 \quad \forall i = 1, 2, 3, 4$$

$$X_{in} \in \{0, 1\} \quad \forall i \& n$$

Component i	$\ln R_{i1}$	$\ln R_{i2}$	$\ln R_{i3}$
1	-0.35667	-0.094311	-0.02737
2	-0.22314	-0.040822	-0.008032
3	-0.28768	-0.064539	-0.01575
4	-0.12783	-0.014505	-0.001729

LINGO model:

```
SETS:
  COMPONENT / A B C D/:
    WEIGHT;
  UNITS / 1..3/;
  LOG(COMPONENT,UNITS): LNR, X;
ENDSETS

DATA:
  WEIGHT = 1 2 1 3;
  WMAX = 12;
  LNR = -0.35667 -0.094311 -0.027371
        -0.22314 -0.040822 -0.0080322
        -0.28768 -0.064539 -0.015748
        -0.12783 -0.014505 -0.0017295; ! LNR is log of reliability;
ENDDATA

MAX = @SUM( COMPONENT(I): @SUM(UNITS(N):LNR(I,N)*X(I,N))) ;
@SUM( COMPONENT(I): @SUM(UNITS(N): WEIGHT(I)*N*X(I,N)) )<= WMAX;

@FOR (COMPONENT(I):
  @SUM (UNITS(N): X(I,N))=1;
@FOR (COMPONENT(I):
  @FOR (UNITS(N): @BIN (X(I,N)) ) );
```

LINDO model:

```

MAX      - .35667 X( A, 1) - .094311 X( A, 2) - .027371 X( A, 3)
        - .22314 X( B, 1) - .040822 X( B, 2) - .0080322 X( B, 3)
        - .28768 X( C, 1) - .064539 X( C, 2) - .015748 X( C, 3)
        - .12783 X( D, 1) - .014505 X( D, 2) - .0017295 X( D, 3)

SUBJECT TO
2]  X( A, 1) + 2 X( A, 2) + 3 X( A, 3) + 2 X( B, 1) + 4 X( B, 2)
    + 6 X( B, 3) + X( C, 1) + 2 X( C, 2) + 3 X( C, 3) + 3 X( D, 1)
    + 6 X( D, 2) + 9 X( D, 3) <= 12
3]  X( A, 1) + X( A, 2) + X( A, 3) = 1
4]  X( B, 1) + X( B, 2) + X( B, 3) = 1
5]  X( C, 1) + X( C, 2) + X( C, 3) = 1
6]  X( D, 1) + X( D, 2) + X( D, 3) = 1

END
INTE    12

```

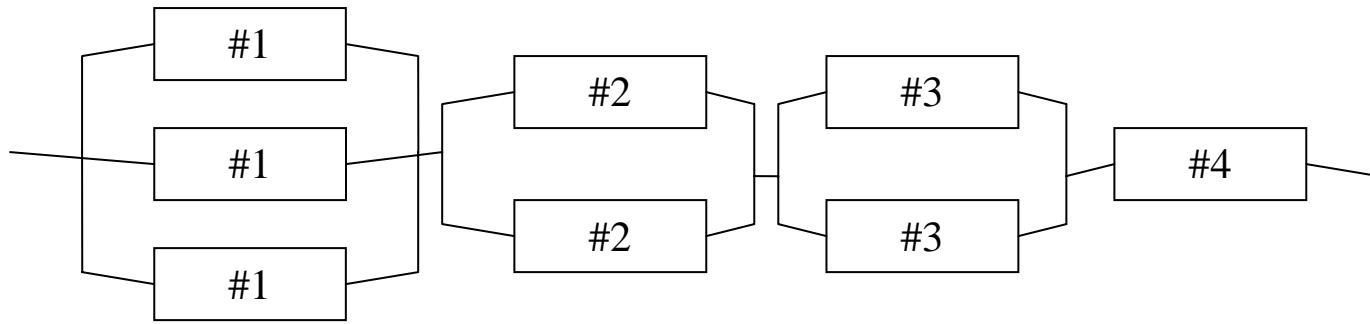
Optimal Solution:

Objective value: - 0.2605620

Variable	Value	Reduced Cost
X(A, 3)	1.000000	0.2737100E-01
X(B, 2)	1.000000	0.4082200E-01
X(C, 2)	1.000000	0.6453900E-01
X(D, 1)	1.000000	0.1278300

Note that $\exp\{-0.2605620\} = 0.77062$

which is in agreement with the dynamic programming solution.



Optimal Design