

Process Plan Selection

Considering Sequence-Dependent Setup Costs

© D.L.Bricker Dept of Mechanical & Industrial Engineering The University of Iowa Manufacture of a product requires *four* operations,

each of which may be performed

on any of *three* alternative machines.

The operation cost/unit for the various machines are:

	Operation	Operation	Operation	Operation
Machine	1	2	3	4
А	3	4	3	6
В	2	4	5	5
C	4	1	6	4

There is a cost associated with *moving* the product from one machine to another between operations.

These sequence-dependent setup costs are:

From	То	Setup Cost
А	В	2
А	С	1
В	А	2
В	С	1
С	А	2
С	В	1

For example, if *L* is the number of units to be produced, i.e., the batch size, then the total cost of the sequence $A \rightarrow B \rightarrow B \rightarrow C$ is $3 \times L + (2 + 4 \times L) + (5 \times L) + (1 + 4 \times L)$

DYNAMIC PROGRAMMING MODEL

- Let $C_{s,x}^c = \text{cost of } changing \text{ part from machine } s \text{ to machine } x$ $C_{n,x}^p = processing \text{ cost per unit for operation } n \text{ on machine}$ xL = lot size
- **Stages**: n = operation (n=1, 2, ..., N)
- **State**: s_n = machine on which previous operation (n-1) was performed
- **Decision**: x_n = machine on which operation n is to be performed

Optimal value function

 $f_n(s_n) =$ minimum cost of completing operations *n*, *n*+1, ...*N* if the part is currently loaded on machine s_n .

$$f_n(s) = \min\left\{C_{s,x}^c + L \times C_{s,x}^p + f_{n+1}(x)\right\}$$
$$f_N(s) = 0$$

Setting Stage	lot siz 4	e L =	: 1, u	ve obt	<i>ain:</i> Stage 2		
s \	x: 1	2	3	Min	$s \setminus x: 1 2 3 \mid Min$		
1	6	7	5	5	1 12 16 12 12		
2	8	5	5	5	2 14 14 12 12		
3	8	6	4	4	3 14 15 11 11		
Stage 3	Stage 3 Stage 1						
s \	x: 1	2	3	Min	$s \setminus x$: 1 2 3 Min		
1	8	12	11	8	1 15 16 16 15		
2	10	10	11	10	2 17 14 16 14 ←		
3	10	11	10	10	3 17 15 15 15		

The optimal beginning state is #2 (machine B).

Optimal Returns & Decisions

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
Stage 1				Stage 3			
Current	Optimal	Optimal	Next	Current	Optimal	Optimal	Next
State	Decision	Value	State	State	Decision	Value	State
A	A	15	A	A	A	8	A
В	В	14	В	В	A	10	A
С	В	15	В		В		В
	С		С	С	A	10	A
					С		С
~~~~~~	~~~~~~~~	~~~~~~~	~~~~~	~~~~~~	~~~~~~~~	~~~~~~~~	~~~~~
Stage 2	~~~~~~	~~~~~~~	~~~~~	Stage 4	~~~~~~	~~~~~~~	~~~~
Stage 2 Current	optimal	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Next	Stage 4 Current	optimal	Optimal	Next
-	Optimal Decision	Optimal Value	Next State	-	Optimal Decision	Optimal Value	Next State
Current	-	-		Current	-	-	
Current State	Decision	Value	State	Current State	Decision	Value	State
Current State	Decision A	Value	<u>State</u> A	Current <u>State</u> A	Decision C	Value 5	<u>State</u> C
Current <u>State</u> A	Decision A C	Value 12	State A C	Current <u>State</u> A	Decision C B	Value 5	<u>State</u> C B

The minimum cost is achieved by initially loading the parts on machine B, resulting in total cost of \$14.

	nui segi		/ C / A / C
Optimal	Solutio	on No. 1	
stage	state	decision	
1	В	В	
2	В	С	
3	С	A	
4	A	С	$B \rightarrow C \rightarrow A \rightarrow C$
5	С		

	\land		The antine of a series and
70	C 7 A	Вフ	The optimal sequence:

Optimal	Soluti	on No. 2	
stage	state	decision	
1	В	В	
2	В	С	
3	С	С	
4	С	С	$B \rightarrow C \rightarrow C \rightarrow C$
5	С		

What is the optimal plan if the lotsize is L=2?

Operation #4:

	Α	B	С	min
Α				
B				
С				

Operation #2:

	Α	B	С	min
Α				
В				
С				

Operation #3:

	Α	В	С	min
Α				
В				
С				

Operation #1:

	Α	В	С	min
Α				
B				
С				