Dynamic Programming

Process Plan Selection

Considering Sequence-Dependent Setup Costs

© D.L.Bricker
Dept of Mechanical \& Industrial Engineering
The University of Iowa

Manufacture of a product requires four operations, each of which may be performed on any of three alternative machines.
The operation cost/unit for the various machines are:

	Operation	Operation	Operation	Operation
Machine	1	2	3	4
A	3	4	3	6
B	2	4	5	5
C	4	1	6	4

There is a cost associated with moving the product from one machine to another between operations.
These sequence-dependent setup costs are:

From	To	Setup Cost
A	B	2
A	C	1
B	A	2
B	C	1
C	A	2
C	B	1

For example, if L is the number of units to be produced, i.e., the batch size, then the total cost of the sequence $A \rightarrow B \rightarrow B \rightarrow C$ is

$$
3 \times L+(2+4 \times L)+(5 \times L)+(1+4 \times L)
$$

Dynamic Programming Model

Let $\quad C_{s, x}^{c}=$ cost of changing part from machine s to machine x $C_{n, x}^{p}=$ processing cost per unit for operation n on machine x
$L=$ lot size
Stages: $\quad n=$ operation ($n=1,2, \ldots N$)
State: $\quad s_{n}=$ machine on which previous operation ($n-1$) was performed
Decision: $\quad x_{n}=$ machine on which operation n is to be performed

Optimal value function

$f_{n}\left(s_{n}\right)=$ minimum cost of completingoperations $n, n+1, \ldots N$ if the part is currently loaded on machine s_{n}.
$f_{n}(s)=\min \left\{C_{s, \chi}^{c}+L \times C_{s, \chi}^{p}+f_{n+1}(x)\right\}$
$f_{N}(s)=0$

Setting lot size $L=1$, we obtain:

Stage 2---

| s | $\mathrm{x}:$ | 1 | 2 | $3 \mid$ |
| :--- | ---: | ---: | ---: | ---: | Min

Stage 1---

The optimal beginning state is \#2 (machine B).

Optimal
 Returns \& Decisions

Stage 1				Stage 3			
Current	Optimal	Optimal	Next	Current	Optimal	Optimal	Next
State	Decision	Value	State	State	Decision	Value	State
A	A	15	A	A	A	8	A
B	B	14	B	B	A	10	A
C	B	15	B		B		B
	C		C	C	A	10	A
					C		C
Stage 2				Stage 4			
Current	Optimal	Optimal	Next	Current	Optimal	Optimal	Next
State	Decision	Value	State	State	Decision	Value	State
A	A	12	A	A	C	5	C
	C		C	B	B	5	B
B	C	12	C		C		C
C	C	11	C	C	C	4	C

The minimum cost is achieved by initially loading the parts on machine \boldsymbol{B}, resulting in total cost of $\$ 14$.
The optimal sequence: $\mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{A} \rightarrow \mathbf{C}$
Optimal Solution No. 1

stage	state	decision	
1	B	B	
2	B	C	
3	C	A	
4	A	C	B $\rightarrow \mathbf{C} \rightarrow \mathbf{C}$

5 C

Optimal	Solution No. 2		
stage	state	decision	
1	B	B	
2	B	C	
3	C	C	
4	C	C	B $\rightarrow \mathbf{C} \rightarrow \mathbf{C} \rightarrow$ C
5	C		

What is the optimal plan if the lotsize is $L=2$?

Operation \#4:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{m i n}$
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

Operation \#3:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	min
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

Operation \# 2:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{m i n}$
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

Operation \# 1:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{m i n}$
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

