# OPTIMAL LOT SILE <br> by Dynamic Programming 

Dennis Bricker,<br>Dept. of Industrial Engineering,<br>University of Iowa<br>dennis-bricker@uiowa.edu

- A company requires $\boldsymbol{n}$ units of a customized electronic component, which is ordered from a supplier.
- When a lot is received, it is immediately inspected, and the company pays an amount $\boldsymbol{c}$ for each unit passing inspection.
- The rejection rate is $\boldsymbol{q}=1-\boldsymbol{p}$.
- Any units in surplus of the number required yields a salvage value $\boldsymbol{v}$ per unit.
- If insufficient acceptable units are received, another lot must be ordered. There is a fixed cost $\boldsymbol{K}$ for reordering.

The smallest lotsize for which the expected yield of acceptable units is equal to at least $\boldsymbol{n}$ is, of course, $\lceil n / p\rceil$, but the optimal lot size will, in general, be larger in order to avoid the reordering cost K.

## Example data

$$
\begin{aligned}
& \boldsymbol{n}=\mathbf{2 0} \text { units } \\
& \boldsymbol{q}=\text { rejection rate }=\mathbf{1 5} \% \\
& \boldsymbol{c}=\text { cost per acceptable unit }=\mathbf{\$ 2 0} \\
& \boldsymbol{v}=\text { salvage value for surplus units }=\mathbf{\$ 5} \\
& \boldsymbol{K}=\text { reordering cost }=\mathbf{\$ 5 0 0}
\end{aligned}
$$

We will assume that the outcome of each inspection is independent and identically distributed, so that the acceptable yield of a lot of size N would have binomial distribution with parameters $(\mathbf{N}, \mathbf{p})$. Hence we would expect that a lot size of $\lceil 20 / 0.85\rceil=\lceil 23.5294\rceil=24$ would yield the required 20 units. However, there would be approximately

$$
\sum_{j=0}^{19} p_{x}(j)=28.66 \%
$$

probability that a deficit would remain so that reordering would be required, where

$$
p_{x}(j)=\binom{x}{j} p^{j}(1-p)^{x-j}
$$

is the probability that j units of a lot of size x will pass inspection.

## Binomial Distribution Table

$P\{j$ units accepted | $x$ units ordered $\}$

| $x \backslash j$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15000 | 85000 |  |  |  |  |  |  |  |
| 2 | 02250 | 25500 | 72250 |  |  |  |  |  |  |
| 3 | 00338 | 05738 | 32513 | 61412 |  |  |  |  |  |
| 4 | 00051 | 01148 | 09754 | 36848 | 52201 |  |  |  |  |
| 5 | 00008 | 00215 | 02438 | 13818 | 39150 | 44371 |  |  |  |
| 6 | 00001 | 00039 | 00549 | 04145 | 17618 | 39933 | 37715 |  |  |
| 7 | 00000 | 00007 | 00115 | 01088 | 06166 | 20965 | 39601 | 32058 |  |
| 8 | 00000 | 00001 | 00023 | 00261 | 01850 | 08386 | 23760 | 38469 | 27249 |

For example, if 6 units are ordered, the probability that exactly 4 units are accepted is 0.17618 .

For the original $n$ required units and each possible deficit, what are the lot sizes which will minimize the total expected cost (minus salvage value received for surplus units)?

## Dynamic Programming Model

Define an optimal value function
$\boldsymbol{f}(\boldsymbol{n})=$ minimum expected cost of acquiring $n$ acceptable units.
$\boldsymbol{x}^{*}(\boldsymbol{n})=$ optimal lot size when n acceptable units are required.
We wish to determine the values of $f(20)$ and $x^{*}(20)$.

## Recursive Definition of the Optimal Value Function

$$
f(n)=\min _{x \geq n}\left\{c \sum_{j=0}^{x} j p_{x}(j)-v \sum_{j=n+1}^{x}(j-n) p_{x}(j)+\sum_{j=0}^{n-1}[K+f(n-j)] p_{x}(j)\right\}
$$

where
$c \sum_{j=0}^{x} j p_{x}(j)$ is the expected cost of acceptable units in a lot of size x
$v \sum_{j=n+1}^{x}(j-n) p_{x}(j)$ is the expected salvage value of surplus units
$\sum_{j=0}^{n-1}[K+f(n-j)] p_{x}(j)$ is the expected cost of reordering
Note that $f(n)$ appears on both left and right of the "="!

Denote the optimal $x$ by $\hat{x}$.

$$
\begin{aligned}
& f(n)-p_{\hat{x}}(0) f(n)= \\
& c \sum_{j=0}^{\hat{x}} j p_{\hat{x}}(j)-v \sum_{j=n+1}^{\hat{x}}(j-n) p_{\hat{x}}(j)+\sum_{j=0}^{n-1}[K+f(n-j)] p_{\hat{x}}(j)+K p_{\hat{x}}(0)
\end{aligned}
$$

Solving for $f(n)$ yields the recursion
$f(n)=$
$\min _{x \geq n}\left\{\frac{c \sum_{j=0}^{x} j p_{x}(j)-v \sum_{j=n+1}^{x}(j-n) p_{x}(j)+\sum_{j=0}^{n-1}[K+f(n-j)] p_{x}(j)+K p_{x}(0)}{1-p_{x}(0)}\right\}$

## Computation of $f(1)$ :

| x | purchase | salvage | reorder | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 17 | 0.00000 | 75.00000 | 108.2353 |
| 2 | 34 | -3.61250 | 11.25000 | 42.5959 |
| 3 | 51 | -7.76688 | 1.68750 | 45.0727 |
| 4 | 68 | -12.00253 | 0.25312 | 56.2791 |
| 5 | 85 | -16.25038 | 0.03796 | 68.7928 |
| 6 | 102 | -20.50006 | 0.00569 | 81.5066 |
| 7 | 119 | -24.75001 | 0.00085 | 94.2510 |
| 8 | 136 | -29.00000 | 0.00012 | 107.0002 |
| f(1) | $=42.5959$ | with lots | $z e=2$ |  |

Example Calculation: Suppose the lotsize is $\mathrm{x}=3$, so that the probability distribution of the number of acceptable pieces is

| $x$ | $j=$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 00338 | 05738 | 32513 | 61412 |  |

$$
p_{x}(j)=\binom{x}{j} p^{j}(1-p)^{x-j}
$$

Then the expected purchase price is $c \sum_{j=1}^{x} j p_{x}(j)=$

$$
\begin{aligned}
& \$ 20[1(0.05738)+2(0.32513)+3(0.61412)] \\
& \quad=\$ 20[0.057375+0.65025+1.84237]=\$ 20[2.55]=\$ 51
\end{aligned}
$$

The expected salvage value is $v \sum_{j=n+1}^{x}(j-n) p_{x}(j)=$

$$
\begin{aligned}
& \$ 5[1 \times 0.32513+2 \times 0.61412]=\$ 5[0.325125+1.22825] \\
& \quad=\$ 5[1.55338]=\$ 7.77
\end{aligned}
$$

The expected reorder cost is $\sum_{j=0}^{n-1}[K+f(n-j)] p_{x}(j)+K p_{x}(0)=$

$$
\$ 500 \times 0.00338=\$ \mathbf{1 . 6 8 7 5}
$$

Summing and dividing by $1-p_{x}(0)=0.996625$ yields

$$
\frac{51-7.77+1.6875}{0.996625}=\$ 45.07
$$

## Computation of $\mathbf{f ( 2 ) :}$



Computation of $f(3)$ :

| x | purchase | salvage | reorder | Total |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 68 | 2.61003 | 5.52821 El | 120.7332 |
| 5 | 85 | 6.39458 | 1.34027E1 | 92.0151 |
| 6 | 102 | 10.53148 | 2.95984 E 0 | 94.4294 |
| 7 | 119 | 14.75646 | $6.13824 \mathrm{E}^{-1}$ | 104.8575 |
| 8 | 136 | 19.00127 | $1.21666 \mathrm{E}^{-1}$ | 117.1204 |
| 9 | 153 | -23.25024 | $2.33059 \mathrm{E}^{-2}$ | 129.7731 |
| 10 | 170 | 27.50005 | $4.34687 E^{-3}$ | 142.5043 |
| 11 | 187 | 31.75001 | $7.93567 \mathrm{E}^{-4}$ | 155.2508 |
| 12 | 204 | -36.00000 | $1.42349 E^{-4}$ | 168.0001 |
| f (3) | $=92.0151$ | with lots | $e=5$ |  |

Note that the minimand is unimodal, although not convex:


Computation of $f(4):$

| X | purchase | salvage | reorder | Total |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 85 | 2.21853 | 8.35848E1 | 166.379 |
| 6 | 102 | 5.76817 | 2.39300 El | 120.163 |
| 7 | 119 | 9.81698 | 6.10536 E 0 | 115.289 |
| 8 | 136 | 14.01554 | 1.43755 E 0 | 123.422 |
| 9 | 153 | -18.25341 | $3.19049 \mathrm{E}^{-1}$ | 135.066 |
| 10 | 170 | 22.50072 | $6.76673 \mathrm{E}^{-2}$ | 147.567 |
| 11 | 187 | 26.75015 | $1.38449 \mathrm{E}^{-2}$ | 160.264 |
| 12 | 204 | -31.00003 | $2.75127 E^{-3}$ | 173.003 |
| 13 | 221 | -35.25001 | $5.33687 \mathrm{E}^{-4}$ | 185.751 |
| 14 | 238 | -39.50000 | $1.01441 E^{-4}$ | 198.500 |
| 15 | 255 | 43.75000 | $1.89498 \mathrm{E}^{-5}$ | 211.250 |
| 16 | 272 | -48.00000 | $3.48733 E^{-6}$ | 224.000 |
| f (4) | $=115.28$ | with lots | $z e=7$ |  |

etc.

| \# Required | Lotsize | Expected yield | Expected cost |
| :---: | :---: | :---: | ---: |
| 0 | 0 | 0.00 | 0.0000 |
| 1 | 2 | 1.70 | 42.5959 |
| 2 | 4 | 3.40 | 66.9837 |
| 3 | 5 | 4.25 | 92.0151 |
| 4 | 7 | 5.95 | 115.2886 |
| 5 | 8 | 6.80 | 137.6817 |
| 6 | 9 | 7.65 | 161.7710 |
| 7 | 11 | 9.35 | 183.2215 |
| 8 | 12 | 10.20 | 205.0304 |
| 9 | 13 | 11.05 | 227.9728 |
| 10 | 15 | 12.75 | 249.7202 |
| 11 | 16 | 13.60 | 270.8886 |
| 12 | 17 | 14.45 | 292.8776 |
| 13 | 19 | 16.15 | 315.5066 |
| 14 | 20 | 17.00 | 336.1120 |
| 15 | 21 | 17.85 | 357.3386 |
| 16 | 22 | 18.70 | 379.2370 |
| 17 | 24 | 20.40 | 401.0926 |
| 18 | 25 | 21.25 | 421.7098 |
| 19 | 26 | 22.10 | 442.8532 |
| 20 | 27 | 22.95 | 464.5606 |

## Summary

If 20 usable parts are required, a lot of size 27 should be ordered.
The expected yield is 22.95 (nearly 23, i.e., 3 more than required), and the expected cost is $\$ 464.56$.

If, for example, the yield is 23 , the cost would be $\$ 20 \times 23=\$ 460$, and the extra 3 parts could be salvaged for $\$ 5 \times 3=\$ 15$, a net cost of $\$ 445$ (about \$19.56 less than the expected cost).

If the yield were only 18 , however, the cost of this lot would be $\$ 20 \times 18=$ $\$ 360$, and two additional parts are needed, so that another lot of size 4 should be ordered. (This would cost an additional $\$ 500$ for re-ordering, plus the cost of the acceptable parts, etc.

