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COMPUTATIONAL
COMPLEXITY
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How can we compare two different algorithms
for the same problem?

¢« QUALITY OF SOLUTION

¢ COMPUTATIONAL EFFICIENCY
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A measure often used to measure computational
efficiency is computer execution time (cpu time)

... but cpu time depends upon
type of computer
programming language
programmer skills
etc.
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PRINCIPLE OF The principle of invariance
INVARIANCE says that two different
implementations of the

same algorithm will not differ in computational
efficiency by more than a multiplicative constant

I[f two implementations of the same algorithrn, which may differ
in programming language & /or machine used, take ti{n) and
tz{n) seconds for an instance of size n, then there exists ac >0

and integer N such that ty{n) = ¢ tain) for all n = N.
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One appropriate way to measure the computa-
tional efficiency is to count the number of
elementary operations that are required by
the algorithm, i.e., additions, subtractions,
multiplications, divisions, comparisons, etc.

Specilically, we compute lhe "worsli-case”
number of efemeniary operalions, whichl may
be guile difterent rrom the “Evpical-case”
proffem encovniered in Fctusl apoficalions.
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A more "macro” view would count the number
of iterations that the algorithm must perform
as a function t(n) of the size n of the problem
if the computational effort per iteration is
stable, e.q., bounded by some function of n.

@Dennis Bricker, L of lowa. 1932
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We say that an algorithm takes time o/ Z4e
arder t(n), where t is a given function, if
there exists a ¢ > 0 and an implementation of
the algorithm capable of solving ewer)y instance

of the problem of size n in a time bounded by
ctin).

This is denoted Olti{n)) and is called the
time complfexizy of the algorithm.
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SLAMNN Dvykstra's Shortest Path Algorithm

Denote: n = # nodes
k = current stage (¥permanent labels)
so (n-k) = #* of temporary labels.
At stage k (1 < k < n),
3 operations are required for each
temporary label:
1 addition & 1 comparison for updating
1 comparison for selecting label to be
made permanent

@Dennis Bricker, L of lowa. 1932
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Total:

That is, the algorithm is O(n®)

@Dennis Bricker, L of lowa. 1932
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An algorithm for which the time (equivalently,
the number of operations) is O(p(n)), i.e.,
proportional to p(n), where p(n) is a polynomial
function and n is the "size” of the problem,

is called a po/yromiz/ fime algorithm

@Dennis Bricker, L of lowa. 1932
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Exponential Time Algorithm ||

An algorithm which 1s not "polynomial time”
is usually referred to as an exponeniial lime
algorithm.

Example: Balas' implicit enumeration algorithm
In the worst-case scenario, no node of the
enumeration tree is fathomed, and all 2"
completions are exp/ic7/i/y enumerated, so that
the algorithm is 0(2™).

@Dennis Bricker, L of lowa. 1932
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The importance of the distinction between
polynomial time & exponential time algorithms
15 evident in the following table, which gives
cpu times for various problem sizes

while the computational burden may not be
significantly different for "small” n, as n
increases the differences become dramatic!
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Corn —

Qin) | 000001 000002 |0.00003 [ 000004 (000005 |(0.00006
e, Sec. e, e, e, SEC,

QO(n2) | 00001 |00004 00009 |Q0016 (00025 |00036
Sec. SEC, SEC, SEC, SEC, SEC,

D[n3) 0001 00058 0.0z 0.064 0125 0216
Sec. SEC, SEC, Sec. SEC, SEC,

On2) | 0.1sec. |32 sec |24.3 1.7 rnin. |5.2 min. |13 min.

SEC,

QfzM | 0.001 | sec. 17 9min| 127 357 vr | 366
SEC. days centuries

0(2™) | 0.059 S8min |65 vr | 3855 | 2x10 1.3z10
SEC, centuries|centuries| centuries

suppose computer can perform 10 operations/sec.
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CLASSIFICATION

OF PROBLEMS

P = set of all problems which are solvable
by a polynomial time algorithm

NP = set of all problems which are solvable
by a "nondeterministic” polynomial time
algorithm

i.e., for which a "quess” can be evaluated in
polynomial time (practically all problems

of interest)

@Dennis Bricker, L of lowa. 1932



Complexity 8/21/00 page 15

For example, the shortest route problem is
a member of the set P.

Clearly,

That is, if a problem can be solved in polynomial
time, then it 15 certainly possible to evaluate
its objective function for a candidate solution
in polynomial time.

@Dennis Bricker, L of lowa. 1932
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Is P =NP?

That is, does there exist a

problem for which no poly-
nomial time algorithm can

never be found?

TS (the fraveling selesmar
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FroinEl Eme TRE Sigori it
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Conjecture:

This is still an open QUEEtIDn although most
mathematicians/computer scientists believe
it to be true.

It ##5 been proved that

/P =NP , then TSP &P

that is, iF Lhere exist profifems f"ﬂr which no
polvnomial Lime @lgoritims can be round, the
Lraveling salesman profifem 1s one such probiem.

@Dennis Bricker, L of lowa. 1932



Complexity 8/21/00 page 1

A problem is called NP-Complete
if all problems in NP can be
™ educed in polynomial time
m. )\ Lo that problem.

It is known that the TSP
is NP-complete....

if, therefore, it is ever
shown that TSP = P, then
NP = P.

@Dennis Bricker, L of lowa. 1932
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Caveal.
The fact that no polynomial time algorithm is
known for the TSP does not imply that no such

algorithm exists!

Until the publication in 1979 by L.G. Khachian
of his "Ellipsoid™ algorithm for linear program-
ming, no polynomial time algorithm was known
for LP!

Fhe Sumniex melinod for L5 15 NVOT podlinomial Time
HTERE WOrSE CHESE, WY WHCH SVer) BEsIC Feasinie
SaMETAN TS encaunierady

@Dennis Bricker, L of lowa. 1932



