C-T Markov Chain 8/23/00 page 1

Elennis Bricker, U. of lowa, 1997

A conlinvous—time Markov Chain (CTMC)
may change 1ts state at Z7) point in Lime:
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The length of time spent in a state before a transition
has the exponeniraz/ distribution:
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The embedded (discrete-time) Markov chain
derived from a CTIMC;
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A Continuous-time Markov Chain

is a stochastic process {X(t): t20} where

® X(t)can have values in §=1{0,1, 2,3, ...}

# Each time the process enters a state 1, the amount
of time 1t spends in that state before making a
transition to another state has an exponential
distribution with mean time %Li

¢ ‘when leaving state 1, the process moves to a state

b
Jwith probability p; where pi=0 and 2 p;=1
=0

¢ [he next state to be visited after state 115
independent of the length of time spent in state |
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Transition Probabilities

pij(ty = P{X(t+s) = j

Continuous at t=0, with
_ 1 if i=j
lim pjit) =
=0

[ po(t) pialt)
P(t) - psilt)

0 ifi=j

X(s) =i}

Transition
matrix is
a function
of time |
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Transition Intensity

Li=-%4p (0) (rate at which the process leaves
state  when it is in state j)

Aij = d o (0) = A pi (transition rate ml.:n gtate i
dt
1] when the process is in
state i)
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The process, starting in state 1, spends an amount
of time in that state having exponential
distribution with rate ;. It then moves to state

. o Aij
j with probability pij = ﬁ: 7]

Il
n n Aj >4
= ZPU: Z ﬁ_,_w‘" i=1 1] N o n
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Chapman-Kolmogoros

gquation

pylt + s) = 3 pult) pyls),  wi,jes,
Ke=s vs,t=0
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Since p (t) is a continuous function,

pij(At) = pyj(0) + Lpy(0) AL + ol At?)
But we have defined 4 = &py;(0)
For i=j: pijlAL) = pi(0) + ;AL + 0(At?)
=MLijAt  for small At
For 1=y: DlAL) = pul(0) + L AL + 0(ALZ)
=1+ A; At for small At

page
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From the Chapman-Kolmogorov equation,
Dij':t‘i‘ﬁtj =2 Diklt) ij(.ﬁtj
k

= Dij(tjﬂjj[ﬂt] + 2 Dik(tj[]kj(ﬁt]

k]
= Dl](tj [1 + l”ﬁt + D(ﬂtzj]
+ 3 padt) [Ayat +o(at?)]

k]
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Diy(E+AL) = py (t) + [z pielt) Ay | At + [z (D] ofat?)

ol AtL?)
Al

Djj(t‘hﬁtj - Djj[tj
AL

= Z D”{[tj llc:j + |:Z [:'1|{|:tj:|
k k

Taking the limit as AL — 0

ip]] (t) = Z ik (t) :'Llc:] 7 1,]

dt
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The process 1S described by the system of

differential equations:

ip"l":t:| => pudtl Ay ¥ i,]
ot :

or

4 pit) =Pt A
dt
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ZDU‘[U: ] H‘ﬂ"-.],t
]
4> py=4(1)=0
—
gt TP T g

A o) =
= %dt pijlt) =0

= 2. Aij=0
j

That is, the sum of each row of A

15 Zerol

page 1
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Example | - i}
_(112+113} 1‘12 1‘13
A= Loy (g +dy) Ay
A3 iz (31 +hs2)
A & ) -
12 ﬁj
1’21

A The sum of each row of A

A3 must equal zerol
)

-

&
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Steadystate Probabilities

findenendent o the initial

1:14116-3[-gl ijlt) = 1 sigte 7/

Must be nonnegative and satisfy
i ni=1
i=1

Wial olher eguziions are needed fo gelermine T 7

&
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Steadystate Probabilities

In the case of discrete-time Markowv chains,

we Used the equations T =nP
' n L]
1.e., Tl.',j:zl TPy V]

1=

/n the case of confinvous-time Markov chains,
we use what gre cafied Balance " egualions.
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Balance Equations |

—
the rate at which the @*ii—

svstem /fegves the state must equal
the rate at which the system enfers
the state;

Dr“ each state i, G</E{>

Mimi = hjm+ Ay + Ay |
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Balance Equations

(> Ajmi=> Ay ng Vi
N '

EOEISILIOT FELES |
From sigie’

BRSO FEIES |
into stzlfe’

-~
steadysigte (> Aijimi= 2 Ay my i
Frstiribution is =i k=i

computod by

safving this il: —

s¥stem of Lo

oguations
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An alternate derivation of the steady-state
conditions begins with the differential
equation describing the process:

Lpyt) =% Pt b ¥ ij |
;

dt

ouppose that we take the 1imit of each
side, ast — oo
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d DU'IIU = > Pilt) Lei & i,]
dt k

—  lim & pijlt) = lim Z Diklt) Ay

e dt =
d
— " (gmw Di; (U) % GLIHW Dm(t)) Ay

— D:anlkj
k

1.8,
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Example | (A pp+hi3) Az Lig
A= Moy —(Rgp+das) Ay
A2 2 A3 Lz —(A31+As2)

T } )
e A=0 |
G)\l Roglhse L2
31
N‘x —hitdizlny +Ahoime +Azinz=0
@ Mizmy = Aoythozing + Azzmz =0
Mzmy + Az —(Astdszlng =0

Ka




C-T Markov Chain 8/23/00 page 22

Elennis Bricker, U. of lowa, 1997

Birth-Death Process |

A birth-death process is a continuous-time

Markowv chain which models the size of a population;
the population increases by 1 ("birth") or
decreases by 1 ("death”),

TS TP I-'v3 TP 15 He
4
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Steadv-State Distribution

fa Birth-Death Process

Y H2 Ha P4 I He

Balance Equations:

State i3 Aqmpg=pim, =




C-T Markov Chain 8/23/00 page 24

Steady-State Distributio

of a Birth-Death Process

TS TP I-'v3 1P s He
Balance Equations:

State /o (A + PR =g+ polte =

A
A+ pramy - Aoy {ll"‘l-"l}l_t_?ﬂﬂ - A

) ¥
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I general

iy + Pic1 Y = Aoz + Pl

Hi---pzp
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= Pi-1 P11 POTQ

FEEIe OF LrEnsilion
FEies halwess
FapFrent siales
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Substituting these expressions for xn; into

§ =1 vields:
i=0
g+ > At did g =1
i=1 PRz
= N 1+§ iin---diko =1
i=1 i Pz




C-T Markov Chain 8/23/00 page 28

Elennis Bricker, U. of lowa, 1997

Once mg 15 evaluated by computing the reciprocal
of this infinite sum, =m; 15 easily computed for
each 1=1, 2, 3, ...
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I'=" Backup Computer 5vstem

I'ss Multiple Failure Modes
I's" The "Peter Principle”

I’ (Gasoline 5tation

I'=" Ticket Sales by Phone

&
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An airlines reservation system has 2 computers,
one on-line and one standby. The operating
computer fails after an exponentially-
distributed duration having mean t; and is
then replaced by the standby computer.

There is one repair facility, and repair times
are exponentially-distributed with mean t.-.

Whal fractron of lhe lime will the sysiem
Fail, 1.e., bolhh compulers fAaving railed?
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Let X(t) = number of computers in operating
condition at time t. Then X(t) is a birth-death

pProcess.
’l”i; }’{; Mote that the
4 3 Bt rate in
oBoBoJE Y
1 1
gt 79
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+ — 4+ |—F
0 lth 1 Af
2
TE.L: 1+ E—f + E_f
0 . r
{2 probability that |
M= 2 both compiters |
wr kT Agve faried
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L

Suppose that o 10, 1.e., the average
T
repair time is 10% of the average time between
failures:
1 _ _
E_IJF 10+ 100=111
1
T, = <., = 0.009009

11

Then both computers will be simultaneously
out of service 0.9% of the time.

Ka



C-T Markov Chain 8/23/00 page 34

Elennis Bricker, U. of lowa, 1997

Example: Multiple Failure Modes

A production system consists of 2 machines,
both of which may operate simultaneously,
and a single repair facility.

The machines each fail randomly, with time
between failures having exponential distribution
and mean T hours.
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Repair times are also exponentially distributed,
but the mean repair time depends upon whether
the failure was "regular’ or “severe' .

The fraction of regular failures is p, and the
corresponding mean repair time is t,.. The

fraction of severe failures is q=1-p, and the
mean repair time is tg.

Let T=7/0 hovrs, p=905, t.=1 four, I5=_% hours.

Hhat 15 the average number of machines in
aperation’
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Markov Chain Model

States

(2,00 both machines operational

(r,0):; regular repair in progress, none waiting
(r,r). regular repair in progress, regular waiting
(r,s). regular repair in progress, severe waiting
(5,0). severe repair in progress, none waiting
(s,r). severe repair in progress, regular waiting
(5,5). severe repair in progress, severe waiting
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8/23/00
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rate of regular
failures

rate of severe
failures

regular repair rate

|—~_¢1—r|—~ —z ||

—

severe repair rate
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Transition rate mnatrix

(S,5) |

to
1 2 3 4 a] f
F 1170.2 0.18 0.02 0 0 0 0
r 21 1 “1.1 0 .09 0.0l 0 0
o al 0.2 0 0.3 0 0 .09 0.01
" 4 0 1 0 ~1 0 0 0
Al O 0 1 0 ~1 0 0
Bl O 0.2 0 0 0 0.2 0
10 0 0.2 0 0 0 0.2
1| hame B
1| (0,00 E
20 tr,00 B
3| 5,00 B
4| (r,r» g
Bl (r,5» E
Bl (s, E
7
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] T T s B B |
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oteadystate Distribution

P1

0.7596253902
0.14047836681
0.05B7232049095
0.012643058012
0.00140478366081
0.02575440248
LO0Z861602497

et e Y TR
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1 P1 = Pi=C

1 0.7596253902 2 1.519z260738

2 0.14047836681 1 0.1404786681
3 0.05B7232049095 1 0.067232040905
4 0.012643058012 o o0

5 0.0014047836681 0O 0

b 0.02575440248 o o0

7 0.002861602497 0 0

The awverage cost/period 1n steady state 1s 1.716961498
1.716%961498<2 = 0.8583480749

In steady state, the system will operate at
approximately Go.8% of capacity.
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state

T
fi -
5 _
4
e
2
1

JILL I

100
hours
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Eandom seed: 675247
Initial state: 1

2 a
24 2

state
# visits

|
'_‘l.

s | O

pan ) Rk

1 4

23 2
time 1n state| 19.814 1358.53 15.713 1.
7 total time o 0.

= L
=0 a0
L

LB07 6% ded T .BHA
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Example: The Peter Principle

The draftsman position at a large
engineering firm can be occupied by a
worker at any of three levels:

T= Trainee

J = Junior Draftsman
S = Senior Draftsman

-

page 44
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Assume that a Trainee stays at a rank
for an exponentially—-distributed length
of time (with parameter a;) before being
promoted to Junior Draftsman.
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A Junior Draftsman stays at that level
for an exponentially—distributed length
of time (with parameter aj = aj; + ajs ).
Then he either leaves the position and is
replaced by a Trainee (with probability
ajt /aj), or is promoted to a Senior
Draftsman (with probability ajs /a;j).
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Ssenior Draftsmen remain in that position
an exponentially—-distributed length of
time (with parameter ag) before
resigning or retiring, in which case they
are replaced by a Trainee.
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The rank of a person in a draftsman’s
position may be modeled as a
continuous—-time Markov chain
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For example, suppose that the mean
time in the three ranks are:

State Mean Time
T 0.0 years
J 1 year

0 years

and that a Junior Draftsman leaves and is
replaced by a Trainee with probability 40%
and is promoted with probability 60%
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Steadystate Distribution |

2ny=04n;+0.2 m,

oree ] 1y=2
0.2n;=0.6m;
M+ Mj+ m=1
ny=0.11

— « n;=0.22
n,=0.67

1.e., 11% of draftsmen are trainees, 22% are
at junior rank, & 67% at senior rank
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The duration that people spend in any given
rank 15 not exponentially distributed in
general. A bimodal distribution is often
observed in which many people leave (are
promoted) rather quickly, while others
persist for a substantial time.

The "Peler Principfe’ asserts that a worker
15 promoted until first reaching a position in
which he or she is incompetent. When this
happens, the worker stays in that job until
retirerment.
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Let's modify the above model by classitying
6O% of the Junior Draftsmen as Competent
and 40% as Incompetent, represented by
states C and I, respectively,

Suppose that incompetent draftsmen stay at
that rank until quitting or retirement (an
average of 1.75 years) and competent
draftsment are promoted (after an average
of 0.5 vears), so that the average time spent
in the rank is still

(0.6)5)+(0.4)01.75) =1 vear



C-T Markov Chain 8/23/00

Elennis Bricker, U. of lowa, 1997

page 53

L. 24yr=" \Ew\r&
0.86/yr.,
DS?IIyr
stegdvsigle
027yr dislribulion
" 1.2n,=0.5717n;+0.2 n,
balance_ﬁ 2n,=1.2my rnt:ﬂ.lll
eqns. 0.571 n;=0.8m, — n.=0.067
=,
i+ Re+ M+ m;=1 ;= 0.6067




C-T Markov Chain 8/23/00 page 54

Elennis Bricker, U. of lowa, 1997

(nmy=0.111

: ““:D'ﬂﬁ?}t tal= 0.222 as bef

'Il:.i _ ﬂlﬁﬂ oral= . as pertore

n;=0.667 0.067 _ 5
- [u_zzz DEJ

while only 40% of the draftsmen promoted to

junior rank are incompetent, we see that the
rank of junior draftsmen is 70% filled with
incompetent persons!

Ka
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A gasoline station has only one pump.
Cars arrive at the rate of 20/hour.

However, if the pump is already in use, these
potential customers may "balk’, i.e., drive on

to another gasoline station.

If there are n cars already at the station,
the probability that an arriving car will

balk is T4, for n=1,2,3,4, and 1 for n>4.
Time required to service a car 1S exponentially
distributed, with mean = 3 minutes.

What 1s the expected waiting time of customers?

-
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"Birth/death” model:

20/hr 15/hr 10/hr 5/hr

20/hr 20/hr 20/hr 20/hr

1-¢,20,20,15,20,15,10 , 20,1510, 5
o 20 20 20 20 20 20 20 20 20 20

=1+1+0.75+ 0375+ 0.09375=3.21875
no= 0.3106796
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Steady State Distribution

Lo =0.31 06?965
1 = Np =U3106?96,

Lo = U.?5ED = GZSSUU‘;?,
ns, = 0.375n, = 0.1165048,
ng = 0.09375n,=0.0291262
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Average Number in Svstem

0.3106796 + 2(0.2330097)

+ 3(0.1165048)+ 4(0.0291262)
1.2427183
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-

0.3106796)x20/hr + (0.3106796)x15/hr

+(0.2330097)x10/hr + (0.1165048)<5/hr
+(0.0291262)<0/hr
13.786407/hr
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Average Time in System |

w-Lf - 12427183

13.786407/hr
= 0.0901408 hr. = 540844504 minutes
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Hancher Auditorium has 2 ticket sellers who
answer phone calls & take incoming ticket
reservations, using a single phone number.

In addition, 2 callers can be put "on hold" until
one of the two ticket sellers is available to
take the call.

If all 4 phone lines are busy, a caller will get a
busy signal, and waits until later before
trving again.

-
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Calls arrive at an average rate of 2/minute, and
ticket reservations service time averages
20 sec. and is exponentially distributed.

What is...

» the fraction of the time that each ticket
seller is idle?

» the fraction of customers who get a busy signal?
* the average waiting time ("on hold")?

Ka



