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Balas' Additive Algorithm 8/21/00

Egon Balas™ algorithm for optimally solving

zero-one LP problems is often referred to as...

Implicit Enumeration

and, because i1t requires only addition &
subtraction (no multiplication or divisions),

Additive Algorithm

D0 .Bricker, U, of |4, 2000
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Standard Form of FProblem

Explicit & Implicit Enumeration

Partial Solutions & Completions

el

Fathoming Tests

Examples
I'="| One
Iz Two
I'z"| Three

D0 .Bricker, U, of |4, 2000
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Let’'s assume that the
problem is of the form:

Minimize z= 2. C;X
j=M
subject to > ajX; = bj, vie M
jeM
Xje {0,1}, ¥ jeN

where M={1,2,3,..., m} and N={1,2,3,..., nj

rrwmIegalive costs! |

D0 .Bricker, U, of |4, 2000
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Maximize -2X; + Xo-3 Xz + X4
subject to

}{1+2}{g-}{3 =1
-2}{1+ }{g -X4£3

Xje {0,1},]=1,2,3,4

AT i slanadaserd For. .

L ECLINE 1E TGN IINEE, 1L NS e
COSLE FTE T 5
SIS CONSLrEIE 15 T geegler—iian —or—egual

D0 .Bricker, U, of |4, 2000
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Heplace Naxy =7 wilh —Min =7
and 2T wilh <7

-Minimize 2X;-X:+ 3 X3-X¥4
subject to

-}{1-2}{g+}{3 =< =1
-2 }{1 +}{g -}{4113
Xje {0,1},j=1,2,3,4

D0 .Bricker, U, of |4, 2000

page



Balas' Additive Algorithm 8/21/00

For each varigble X Hhaving g negalive cosi,
supstitute 1-¥; where Y e {01} 75 ke
complement of X|.

- Minimize 2X;- (1-Ys) + 3 X5- (1-Y4)

subjectto _y o (1-Ys) + X3
22X+ (1-Y2) - (1-Y4)
X e {0,1},j=1,3

Yie (0,1}, j=24

A 1A

D0 .Bricker, U, of |4, 2000
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Fhal 15, Lhe original profbfem 1s eguivalent Lo
the foflowing probfem, wiich is in the slandzrd
Form ™ for Dalas algorriam.

2 - Minimize 2X;+Y: + 3X:+Y,
subject to

-}{1 +"'|"'g +}{3 <
-2 }{1 -"'l"'g +"'|"'4 < 2
X 10,1}, j=1,3

Y {0,1}, j=2,4

D0 .Bricker, U, of |4, 2000
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Minimize 3 X+ 8 Xo+ Xz + 16 X4 + X5
subjectto X -2X; -BX3+2X3+3X5=0 |
X -3X3 -2Xg+ 2X52-2 |
X;-5X; +4X; -X4-2X52-5
Xje {0,1},j=1,2,3,4,5

There are 2° = 32 binary vectors of length 5,
which we could explicitly enumerate.

&

D0 .Bricker, U, of |4, 2000
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Minimize 3 X+ 8 Xo+ X3+ 16 Xy + X5
subjectto Xy -2X; -BX3+2Xy+3X5=0 |
X -3X3 -2Xq+ 2 X5 -2 |
X;-5Xp+4X; -Xq4-2X52-5]
X € {0,1},j=1,2,3,4,5

For each of the 32 binary vectors, let’'s evaluate
i Z =3X 1 +8X+ X+ 16X, + X5
gi(X)= XK1 -2Xo-6X3+2X4+3 X510
1 gaX)= Xi-3X3-2X4+2Xs  =-2
g3(X) X1 -5Xo+4X3-%X4-2Xs -5

D0 .Bricker, U, of |4, 2000
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Balas' Additive Algorithm

dy 95 g5
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Balas' Additive Algorithm

Fd

Z

dy 92 93

dy 92 g

~prie o]

ol ]

—_— —_— NN = NN |

O-~0O—~0O—0O—0O—0O—0O—0O—|
CO——00——00——00——|
CO00————O000——m——|
CoO000000———————— m
=Yetotelololalal Y=Y =Y=Y=Y=-Y=T=0

—NMTNOMOOO—NMTING |

one feasible in

on #¥111s e only
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Fhe order of branching is nol imporiant, e.g.,
ane can dranch on Xs

berare branching
on Xz

/n fact, the choice af branching
viarigble may arfrer on Lhe same
lfevel of the tres!

D0 .Bricker, U, of |4, 2000
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Partial Solutions |

A "partial solution™ corresponds
to a node of the enumeration = =
tree in which binary values
have been assigned to a

subsetl of the variables

pariial saluiron]

D0 .Bricker, U, of |4, 2000
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Representation of a partial
solution may be done by a
vector of * indices of the
assigned variables:

pardral sofufion

D0 .Bricker, U, of |4, 2000
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Completions

The completions of a partial solution
consist of ALL of the nodes at the
bottom-most level of the tree,
where all variables have been
assigned.

zero completion |

The completion with all free
variables assigned value of zero

15 the "zero completion”

camplelions of |
pariial safuiion |
D Bricker R . aof 14 . 2000 e
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Fathoming of a
Partial Solution |

A partial solution (nnde) of an enumeration tree
may be considered fathomed if one of the

following may be demonstrated:
# all completions violate one or more constraints

# all completions are inferior (with respect to
the objective) to the incumbent

# the zero completion is feasible & superior to
the incumbent (& therefore becomes the new
incumbent) &

D0 .Bricker, U, of |4, 2000
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A free variable X5 (j¢ J) which has nonnegative
coefficients in ewvery constraint which is
violated by the zero completion should be
zero, since assigning it the value 1 will improve
neither the objective function nor feasibility.

D0 .Bricker, U, of |4, 2000
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Compute

A={jlje N-J,aj= 0 vicM suchthat §;< 0}

and . iAdices of free varigbles
. which are efigible to be
aesigiiod vafve 7

If N'=g, then the partial solution J may be
fathomed!

FATHOMING
. TEST ONE |

page 20
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Fathoming Test =

Let 7 be the objective function value of the
zero completion of the partial solution J.

If Z+Cy>Z (the incumbent) for some k ¢ J,
then no completion of J which has X = 1
can be optimal!

D0 .Bricker, U, of |4, 2000
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Compute B={i|iEN1,Z+Cjzg}
indices of &ff free
and varishios which sro

afigibie fo be sssigred
vafve 7

If N°=@, then the partial solution may be

fathomed!
FATHOMING
TEST TWO

D0 .Bricker, U, of |4, 2000
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Fathoming Test =

If constraint #i is violated by the zero
completion of the partial solution, so that

the slack 5; < 0O,
and if the sum of all negative coefficients of
the free variables (in N?) exceeds S;,

Then no feasible completion of the partial
solution exists.

D0 .Bricker, U, of |4, 2000
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Compute

If Cc=@ then the partial solution
1s fathomed.

FATHOMING
TEST THREE

D0 .Bricker, U, of |4, 2000
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Selection of a Free

Yariable for Forward Step

When the rathoming lests rail fo raltfom [he
current pardial sofulion, dranching will be
pertformed, &y Fixing a free variaole A;

J e J+ J} fhe posiiive index F" is sppended |

fo the end of the current J vector |

ARy rree variable might be chosen.. ..
Is Lhere g best " chorce?

D0 .Bricker, U, of |4, 2000
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Let 5; = slack in constraint #i in the zero
completion of J
Then 5 —a;; = slack in constraint #iif free
variable X;=1 while other free
variables are assigned value zero

Define (Si-aj)~ = min {0, §;-a;) NEGATIVE PART |

Vi = 2.(8i-a;)” measures the infeasibility which
! results from fixing Xj=1

D0 .Bricker, U, of |4, 2000
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Balas' strategy was to choose the free variable
which would result in the /Ze#sf infeasibility,
i.e., the maximum ("least negative”) value of v,

j* = arg]r_'ﬁg {v]- }= argmax 2. [si_au]-

j=MN°

Cher rufes might resull in pariral sefulions
whrch are more easily fathomed.

D0 .Bricker, U, of |4, 2000
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EIEI:I::T.FEE:I{I | FOR'WARED MOVE I

STHRT J=lEl 7===

Form Zerno
Completion

elements
af J under—
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Minimize 4 X+ 8X,+ 9 Xs+3X,+ 4Xc+ 10 X,
5.1, 4X1—5K2—3H3—2H4— H5+SH5£_S
DX +2 X +9X+8 X, -F XK+ 8 XK= T

8 X +9 X:-4 X, + Xc+6 X2 B

X;e{0,1} ¥i=1,...,6
Inserting slack variables:

4X1—5K2—3H3—2H4— H5+SH5+51:—8
—5}{1+2}{2+9}{3+8}{4—3}{5+8}{5+ng 7
SH1+5H3—4H3+ H5+6H5+53: 6

&

D0 .Bricker, U, of |4, 2000
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d = 1484585

# wvarlables = a
# constraints =

1 2 3 4 5 6 b

4 8 9 3 410 min

4 75 73 T2 71 8= 78
5 2 9 85 73 8= 7
5 5 "4 0 1 BZ 6

Constraints are of the form Ax=h

D0 .Bricker, U, of |4, 2000
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J V1 4 N1 B N2 - 7 i zZ*
9 |1|1E'|2345| |23 45| |3???|2|ttt§

@JE ______________________________________________

Constraints violated by zero completion:

52: F.-"| Dk
53: ) ﬂk

= {1,6}: variables which cannot improve
feasibility in violated constraints if equal to 1

4}{1—5}{2—3}{3—2}{4— }{5+8}{5+51:—8

@ @ Constraint #1

0 Ericker TOTIELE t7ve coefficients in vialated constramnt!
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J V1 4 N1 B N2 - 7 i zZ*
9 |1|1E'|2345| |23 45| |3???|2|ttt§

@JE ______________________________________________

N'=N-J-A={1,234561-2-{1,6}=(234,5

Indices of free variables

which might be assigned
value of 1 :

LN ONINNEm N!# &, so this test fails to fathom
T the partial solurtionl

D0 .Bricker, U, of |4, 2000
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J V1 4 N1 B N2 - 7 i zZ*
9 |1|1E'|2345| |23 45| |3???|2|ttt§

@ J=1 Fathoming Test #2 isn't applicable, since
we do not yet have a finite incumbent.

—5}{2—3}{3—2}{4— H5+3}{5+51:—

It is possible to satisfy constraint #1 by assigning
values to the free variables having negative
coefficients, e.g.,

X=X:=X=Xc=1 =8, =-8+5 +3 +2+1 =3 = 0 feasiblel
2 3 4 5 1 = jr‘C:E;
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I Wi 4 N1 B N2 o v i Z*
[1] |1|15|2345| [2 3 4 5] |3???|2|t**§

@ J=1 wince the fathoming tests hawve all failed,
we must next choose a variable for

branching.

constraint
infeasibility if =
Variable 1 Z

Least amount
of infeasibility
if assigned 1

D0 .Bricker, U, of |4, 2000
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Balas' Additive Algorithm

T
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N1 N2

V1

i

1
1
1

TEE
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d = 14834585

aolution is:

i 1 2 3 458 a
Afir o1 o110
Dbjective function valus 1is 15

D0 .Bricker, U, of |4, 2000
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Example Problem f

# variables = §

# constralnts 3

1 2 3 4 & L

5 710 3 1 min

13 771 4 = 7
a "B 3 2 T2 = 0
o1 72 1 1 =71

Constraints are of the form Ax=h

&

D0 .Bricker, U, of |4, 2000
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itera-

tion J W1 & N1 B Nz [ v J s
1 1 312 5|1 3 4| ddkx 1 34 4 T3 TH| 3 oo
2 3 2 1 4|25 i 2 h 2 2 oo
3 3 2 e e
4 3 2 |2 1 41|58 i a] 2 17
5 173 1 312 61 4 i 1 4 3 17

D0 .Bricker, U, of |4, 2000
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Balas'
Additive

Algorithm

Examnple Problem f

CPT time= 1.75 sec.

polution is:

1 2 3 45
iz o1 1 00

DOhJjective function valus is 17

-

D0 .Bricker, U, of |4, 2000
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Fandom ILP (seed =

# wvariabhles = 8

# constraints 4]
1 23 4 &5 a8 7 8 b
3 45 90 §F 94 4§ mir
3 FB4 72 B "4p TH =2
g 81 8 2 20 4= 7
o 24 7 73 286 1 =1a
RO25 72 B 40 4= 0
g "1 1 1 73 8 7 0=1a

Constralints are of the form Ax=bh

D0 .Bricker, U, of |4, 2000
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ik

JIC T A W I

2 4 B B

1 3 5 7

e b b

L Co Lo b L
b b

A AT

V1
1

N1

42 4 B B

AT AT

“h T2
"B T2 8
"B T2 78

I oo b
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1 23 4 5 67 8 b
3 45 9 5 04 6  nin
3 54 -2 6 46 5 5 2
O 81 8 -2 20 4= 7
5 24 7 -3 26 1 =16
5 25 -2 h 40 4= 0
5 -11 1-3 67 0 =16
1| w1 A N1 |B N2 | ¢ ¥ il z*
1 L1135 71245658 24 6 8 “3 71 0 4| |k

The first constraint is violated by the zera completion (5 =-2).

Yariables 1,35, &7 have positive coefficients in this constraint, and thus
canhot help in achieving feasibility. They form the set A, which are
implicitly fixed = 0, Teaving N = {2, 4, 6, 8}

Test 2 isn't applicable because no incumbent has been identified.

Test 2 considers the wiolated constraints in %1 to determine whether it is
possible to satisfy them. In this case, we see that increasing any ane of
variables 2,4,6, or 8 will result in feasibility, so C is empty.

The fathoming tests have failed, and therefore we must perform a forward

branch.

@0 Lof 14, 2000
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1 23 4 5 67 8 b
3 45 9 5 04 6  nin
3 54 -2 6 46 5 5 2
O 81 8 -2 20 4= 7
5 24 7 -3 26 1 =16
5 25 -2 h 40 4= 0
5 -11 1-3 67 0 =16
1| w1 A N1 |B N2 | ¢ ¥ il z*
1 L1135 71245658 24 6 8 “3 71 0 4| |k

Choosing the branching variable:

Setting variable 2 equal to 1 results in constraint wiolations {0, 1, 0, 2, 0} and
so0 WEZ = -3,

Setting variable 4 equal to 1 results in constraint wiolations {0, 1, O, O, 0} and
o Mg = -1

Setting variable 6 equal to 1 results in constraint wiolations 10, 0, 0, 0, 0} and
50 YVE=0.

Setting variable 5 equal to 1 results in constraint wiolations {0, 0, 0, 4, 0} and
S0 WE = 0.

D0 .Bricker, U, of |4, 2000
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1 23 4 5 67 8 b
3 45 9 5 04 6  nin
3 54 -2 6 46 5 5 2
O 81 8 -2 20 4= 7
5 24 7 -3 26 1 =16
5 25 -2 h 40 4= 0
5 -11 1-3 67 0 =16
1| w1 A N1 |B N2 | ¢ ¥ il z*
1 L1135 71245658 24 6 8 “3 71 0 4| |k

The (rather arbitraryl rule is to select that variable causing the least
infeasibility, and so variable 6 15 selected for the branching.
Therefore, J, which was previously empty, is now {+&}.

D0 .Bricker, U, of |4, 2000
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1 23 4 5 67 8 I
2 45 9 5 94 5 min
2 54 72 B T4 6 THh =72
o 8581 &8 72 20 4= 7
9 24 7 73 26 1 =18
25 72 B 740 4= 0
9 711 1 "3 67 0=1h
J1 ¥ & N1 B Nz C 7 1| &*

e e

At node 2, J={+b} and no constraints are violated by the zero
completion (ie, ¥ = 1 and all other variables zero).

Since no other completion of this partial solution can cost less than
the zero completion, the node is fathomed, and we may backtrack.

Backtracking: Jbecomes {-G}

D0 .Bricker, U, of |4, 2000
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1 23 4 5 67 8 b
3 45 9 5 94 & nin
375472 6 46 75 =2
0O 81 8-2 20 4z 7
9 24 73 26 1 =15
5 25 "2 h 40 4= 0
9 -11 1 -3 67 016
MKz A L N2 v i z+k
sl6l1l1 35 7| 248 [a]zs -3 4 2] 9

At node 3, again only the first constraint 1s violated by the zero

completion, and variables 1, 3, 5, & 7 cannot contribute toward
making this constraint feasible, so that they are implicitly fixed
at value zero, leaving only free variables 2, 4, & &.
If =2 or x8 were fixed at value 1, the objective function is less than
the incumbent, but 1f x4 were fixed at 1, the cbjective function woulg
exceed the incumbent (B = {4}) and therefore is implicitly fixed at
value 0, leaving only M = {2, &1 as free variables. Fixing either of
these at value 1 would satisfy the violated constraint (#1), 50 Cis

empty.

©0._. ..., .. of |4, 2000
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1 23 4 5 67 8 b
3 45 9 5 94 & nin
375472 6 46 75 =2
0O 81 8-2 20 4z 7
9 24 73 26 1 =15
5 25 "2 h 40 4= 0
9 -11 1 -3 67 016
MKz A L N2 | v i z+k
sl6l1l1 35 7| 248 [a]zs -3 4 2] 9

Therefore we cannot fathom this node, and must make a forward
move, 1.e, branch.

Selection of branching variable: Fixing variable 2 at 1 gives
constraint wiolations 0,0, 1,0, 2, 0, while fixing variable & at 1
gives violations 0,0, 0,4, 0. Variable 2 results in less infeasibility,

and 15 selected for branching.

D0 .Bricker, U, of |4, 2000
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1 23 4 5% A7 8 L
3 465 9 85 94 & min
354 "2 A6 4K F = "2
D 81 8 "2 20 4= 7
9 24 7 "3 26 1 =16
5 25 "2 B 40 4= 0
9 11 1 "3 &7 0 =14
J V1 A N1 | B [Hz2|C v il zZ*|
4| "6 2 2 4|3 7 8|1 454 5|1 |2

At node 4, constraints 2 & 4 are violated by the zero completion,
but variables 3, 7, & & cannot assist in making these constraints
feasible, and are therefore implicitly set equal to zero, leaving
variables 1, 4, &5 as free variables.

Consider ®4: together with ®2 this gives a cost of 13, exceeding the
incumbent (2); likewise, variable X5 together with X2 gives a cost

of 9 which 15 no better than the incumbent. Hence variables 485 may
be implicitly fixed at value zero, leaving only variable 1 as a free
variable,

D0 .Bricker, U, of |4, 2000
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1 23 4 5 67 8 b
3 45 9 5 94 &  min
3754 "2 6 46 "5 = 2
0 81 8§ "2 20 4= 7
o 24 73 26 1 =16
5 25 2 6 40 4= 0
911 1 -3 &7 0=16
hj V1 A N1| B |N2|C v j

W

|
=]
)
)
W
[N

7 8|1l 4514 5|1

with variable 2 equal to 1 and only variable 1 free, we can determine
that the violated constraint #2 cannot be made feasible. (Constraint
4 could be made feasible by setting ¥1 = 1.) Hence C={2} and the
subproblem is fathomed.

We must now backtrack:

Currently J = 1{-6, +2} and so the next node will have J={+f, -2}.

D0 .Bricker, U, of |4, 2000
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1 23 4 &5 &7 8 I
2 45 9 H 94 & min
42 54 72 B T4 6 ThH =72
o831 &8 "2 20 4= 7
P24 773 26 1 =16
R 25 7d 6 T40 4= 0
9 711 1 73 &7 0 =14
J V1 A N1 B NZ v i
506 21|13 85 7| 48[4 g 4 t

violated b}f the zero completion,
Yariables 1, 3,5, & 7 cannot help to achieve feasibility of this

At node 5 variables 2 & § are zero, and again constraint 1 15

constraint (since they have positive coefficients) and therefore
they can be made implicitly zero, leaving only variables 4 & & as
free variables.

Yariable 4, if set = 1, would cause the cost to exceed the incumbent,

and therefore is imphicitly fixed at zero, leaving only variable & free

D0 .Bricker, U, of |4, 2000
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1 23 4 &5 6 7 8 I
4 445 9 B 904 § min
42 54 72 B T4 6 ThH =72
o831 &8 "2 20 4= 7
P24 773 26 1 =16
R 25 7d 6 T40 4= 0
9 711 1 73 &7 0 =14
J Vi A N1 B N2 (C|w [J]| &%
506 21|13 85 7| 48[4 g "4 |8 t

we see that with only variable &, 1t 15 possible to satisfy constraint
I (by setting X8 = 1], so Cis empty.

Fixing #&=1 results ininfeasibilities 0,0, 0, 4, 0. Obviously variable
& 15 chosen for the branching.

J,which was {-0, -2}, 15 extended on the right by +5, 1.,
J=1-6, -2, +8}

D0 .Bricker, U, of |4, 2000



Balas' Additive Algorithm 8/21/00 page 58

D0 .Bricker, U, of |4, 2000



Balas' Additive Algorithm 8/21/00 page 59

1 23 4 &5 6 7 8 b
3 45 9 H 94 5 min

2754 72 6B "48 7H =272
o881 8 "2 20 4= 7
B 24 773 26 1 =16
R 258 72 B 740 4= 0
711 1 73 67 0=1a

J V1 A N1 B N2 || v | ]| &*

B "B "2 8 4 35 7 1 4|1 4 0

At node 6, the zero completion violates constraint 4, and the free
variables 3, o, & 7 cannot help to remove the feasibility, and
hence are implicity fixed at value zero, leaving only variables

1 & 4 as free variables.

Howewver, increasing variable | would result ina cost of 6+3, which
15 no better than the incumbent, while increasing variable 4
would result ina cost of 15, worse than the incumbent. These
two variables are imphicitly fixed at value zero, therefore,
leaving no free variables. The node 1s fathomed.
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To backtrack from J=1{-6, -2, +8},

we look for the last element without
underling, reverse its sign, and
underline 1t, giving us
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1 23 4 5 67 & b
3 45 9 5 94 &  min
375472 6 46 75 =72
0 81 8 "2 20 4z2 7
9 24 773 26 1 =16
5 25 72 640 4= 0
9 °11 173 67 016
I v1 A N1 | B | N2 7
76281 [1325 7| 4 |4 9

At node 7 wvariables 2, 6, &5 are all fixed at zero, and the first
constraint 1s viclated by the zero completion. Yarables 1, 3, 5,

and 7 all have positive coefficients in this constraint and are

therefore unable to assist in gaining feasibility. Hence they are
imphicitly fixed at value zero, leaving only variable 4 as a free
variable, However, setting variable 4 equal to 1 gives a cost (9)
which 15 no better than the incumbent, and therefore this node can

be fathomed.
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To backtrack, we look for the right-

most element without underlhine.

there are none, and therefore the
tree 1s fathomed.

J =10, 2, -8

The current incumbent 15 therefore
optimal.

That is, Xy = 0 except for j=6 (found
at node 2.
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