DP Modeli

Option Pricing

An American Put Option gives the holder

the *right* (but not the obligation)
to *sell* a specified quantity of a commodity
at a specified "strike" *price*at *any time* the holder chooses,
on or before a specified *expiration* date.

(A European Put Option can only be exercised at the expiration date.)

© Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

EXAMPLE:

- The *current price* of a share of stock in XYZ is P = \$2.00.
- You have an option to sell 100 shares of this stock for P' = \$2.10 ("strike price") at any time you choose within the next six months.
- Assume the time value of money is 5% per annum.
- The annual *volatility* of the commodity price is σ =0.2.

Volatility: A measure of the previous fluctuations in share price (crudely: an indicator of the commodity's up/downess). Usually, the standard deviation of the log of price returns.

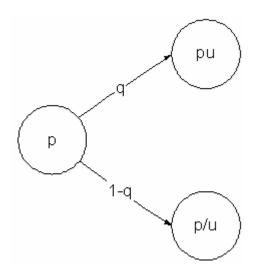
--http://www.numa.com/ref/volatili.htm

What is the expected value of this option?

(Clearly it is worth at least \$10, because it could be exercised immediately by buying 100 shares at \$2 and selling them for \$2.10 each.)

ASSUMPTIONS

We assume the *Cox-Ross-Rubenstein* binomial option pricing model, according to which the price of the commodity is assumed to follow a *two-state discrete jump* process:



If the price of the commodity is P in period t, then its price in period t+1 will be

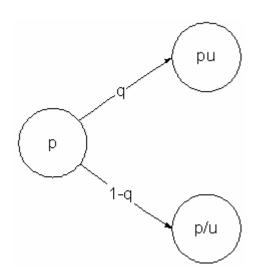
- Pu with a certain probability q, and
- $P/_{u}$ with probability 1-q,

where

$$u = e^{\sigma \sqrt{\Delta t}} > 1$$

$$q = \frac{1}{2} + \frac{\sqrt{\Delta t}}{2\sigma} \left(r - \frac{1}{2} \sigma^2 \right)$$

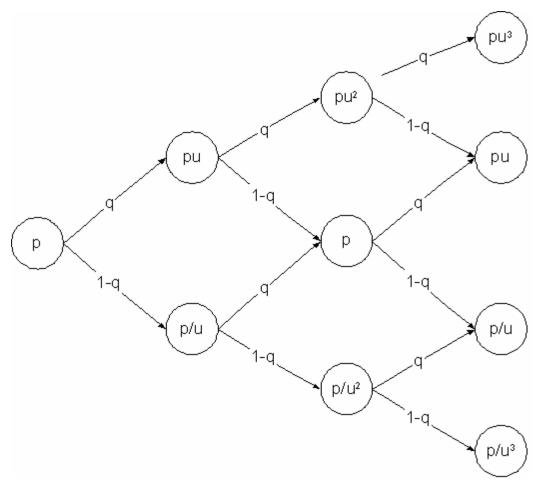
$$\delta = e^{-r\Delta t}$$



Here,

r is the annual rate of interest (continuously compounded),

 σ is the annualized volatility of the commodity price, Δt is the length of a period in years



If we choose the length of the time periods (Δt) sufficiently short, this gives a reasonably close approximation to reality.

Sample data:

P = 2 = current commodity price

P' = 2.1 = "strike" price

r = 5% annual interest rate

T = 0.5 years (time to expiration of option)

 σ = 0.2 annual volatility of commodity price

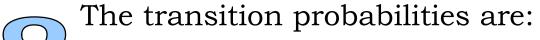
 $\Delta t = .01 \text{ year}$

Coption_Pricing	X
Time of expiration	0.5 years
Number of stages	10
Volatility 0.2	
Annual rate of inter	est 5 %
Strike price	210
Current price	200
Cancel	ОК

The 50 *stages* are each of length $\Delta t = 0.01$ year.

prices
$$p \in \{p_0 u^i | i = -(N+1), -N, ..., 0, ..., N, (N+1)\}$$

The two decisions at each stage are $x \in \{KEEP, EXERCISE\}$



$$P_{ij}^{x} = \begin{cases} q & \text{if } j = ui \\ 1 - q & \text{if } j = i/u \\ 0 & \text{otherwise} \end{cases}$$

The *reward* function is

$$g(i,x) = \begin{cases} 0 & \text{if } x = \text{"keep"} \\ \overline{p} - i & \text{if } x = \text{"exercise option"} \end{cases}$$

The *optimal value* function is the expected value of the option:

$$f_{t}(i) = \max \begin{cases} \overline{p} - i \\ q\delta f_{t-1}(iu) + (1-q)\delta f_{t-1}(iu) \end{cases}$$

with the *post-terminal condition*:

$$f_{N+1}(i) = 0$$

APL function

```
∇ z+F N;t;v
[1]
[2]
                Option pricing
[3]
[4]
     :if N=0
[5]
         z+((\rho s)\rho 0),-BIG
[6]
     :else
     A Recursive def'n of optimal value function
[7]
      v+(F N-1)[TRANSITION(L/s)\Gamma(\Gamma/s)Ls \circ . \times (2\rho u) \circ . \star d]
[8]
[9]
      v[;2;1]+v[;2;2]+Strike-s
[10] z+(q,1-q) Maximize_E v
[11] :endif
[12]
```

(hold) (execute)
----------	----------

S	\ x:	0	1	Maximum
127.9		0.000	82.119	82.119
133.7		0.000	76.270	76.270
139.8		0.000	70.153	70.153
146.2		0.000	63.757	63.757
152.9		0.000	57.069	57.069
159.9		0.000	50.074	50.074
167.2		0.000	42.760	42.760
174.9		0.000	35.111	35.111
182.9		0.000	27.112	27.112
191.3		0.000	18.747	18.747
200.0		0.000	10.000	10.000
209.1		0.000	0.853	0.853
218.7		0.000	⁻ 8.713	0.000
228.7		0.000	$^{-}18.716 $	0.000
239.2		0.000	⁻ 29.177	0.000
250.1		0.000	$^{-}40.116 $	0.000
261.6		0.000	⁻ 51.555	0.000
273.5		0.000	$^{-}63.518$	0.000
286.0		0.000	⁻ 76.028	0.000
299.1		0.000	⁻ 89.109	0.000
312.8		0.000	⁻ 102.790	0.000

Stage #1

As we would expect, at the final stage it is optimal to execute the option if & only if the current price of the commodity is less than the strike price!

(hold	(execute))
(11014)	(CACCUCC)	

	,		,	
s `	\ x:	0	1	Maximum
127.9	79.	096	82.119	82.119
133.7	75.	935	76.270	76.270
139.8	69.	804	70.153	70.153
146.2	63.	392	63.757	63.757
152.9	56.	686	57.069	57.069
159.9	49.	674	50.074	50.074
167.2	42.	341	42.760	42.760
174.9	34.	673	35.111	35.111
182.9	26.	655	27.112	27.112
191.3	18.	269	18.747	18.747
200.0	9.	500	10.000	10.000
209.1	4.	832	0.853	4.832
218.7	0.	412	⁻ 8.713	0.412
228.7	0.	000 -	18.716	0.000
239.2	0.	000 -	29.177	0.000
250.1	0.	000 -	40.116	0.000
261.6	0.	000 -	51.555	0.000
273.5	0.	000 -	63.518	0.000
286.0	0.	000 -	76.028	0.000
299.1	0.	000 -	89.109	0.000
312.8	0.	000 -1	02.790	0.000

Stage #2

In the next-to-last stage, it becomes optimal to hold the option if current price is only slightly below strike price!

....etc.

	(hold)	(execute)			
s \	\ x: 0	1	Maximum		(a)
127.9	79.096	82.119	82.119		
133.7	75.935	76.270	76.270		(70)
139.8	69.804	70.153	70.153		
146.2	63.392	63.757	63.757		$\mathcal{G}_{\mathcal{O}}$
152.9	56.686	57.069	57.069	7	7
159.9	49.674	50.074	50.074	<u> </u>	
167.2	42.341	42.760	42.760	(ab)	
174.9	34.826	35.111	35.111		
182.9	27.439	27.112	27.439	(70)	
191.3	20.755	18.747	20.755		(20)
200.0	14.625	10.000	14.625	(20)	
209.1	10.145	0.853	10.145	7	
218.7	6.149	⁻ 8.713	6.149		
228.7	3.848	$^{-}18.716$	3.848		
239.2	1.883	$^{-}$ 29.177 $ $	1.883		
250.1	1.044	$^{-}40.116$	1.044		
261.6	0.377	$^{-}$ 51.555 $ $	0.377		
273.5	0.179	$^{-}63.518$	0.179		
286.0	0.040	⁻ 76.028	0.040		
299.1	0.014	⁻ 89.109	0.014		
312.8	0.001	⁻ 102.790	0.001		

How big a "killing" must be possible in order to execute the option immediately?

⇒value of option is \$14.63 (if current price is \$200)

".. IN CONCLUSION, THE BEST TIME TO BUY ANYTHING IS LAST YEAR." Copyright (c) 1997 by Thaves. Distributed from www.thecomics.com.