
Lagrangian Heuristics for SCP 4/9/98

INVESTIGATION OF LAGRANGIAN HEURISTICS FOR

SET COVERING PROBLEMS

by

Techapichetvanich, Kavee

Bricker, Dennis

Department of Industrial Engineering

The University of Iowa

Iowa City , IA 52242

USA

May 1993

1

Lagrangian Heuristics for SCP 4/9/98

ABSTRACT

This paper presents new Lagrangian Heuristics for the set covering problem (SCP).

These heuristics are designed to be embedded within an algorithm (e.g., subgradient

optimization) to search for optimal Lagrangian multipliers. A Lagrangian heuristic may

adjust a (perhaps infeasible) solution of a Lagrangian relaxation and/or make use of

information available in the form of the Lagrangian multipliers. Such an algorithm was

presented by J.E. Beasley who reported that, in computational experiments, it

outperformed a number of other existing heuristic algorithms. However, his heuristic

algorithm which uses only the Lagrangian relaxation solution and ignores the multipliers,

worked well only for random-cost problems which may bear little resemblance to typical

real world applications. We present four extensions of his algorithm designed to perform

well for classes of problems which appear to be much harder to solve than Beasley's

random-cost problems but which more adequately model real world problems, i.e., unicost

and correlated-cost problems. (The latter class displays a positive correlation between the

cost of a column and its density, i.e., the number of rows covered.) Computational

results, based on problems involving 200 rows and 1000 columns, indicate that our

Lagrangian heuristics do produce good-quality solutions and outperform Beasley's

heuristic significantly for unicost and correlated-cost problems.

KEY WORDS: set covering problem, Lagrangian heuristic algorithms, Lagrangian

relaxation

2

Lagrangian Heuristics for SCP 4/9/98

Introduction and Problem Statement

Given a set of points I={1, 2, ... m} and a collection of sets Aj, j∈J={1, 2, ...n},

we say that set Aj "covers" point i∈I if i∈Aj, indicated by aij = 1, while aij = 0 if i∉Aj. A

collection of sets Aj, j∈S where S is a subset of J, is called a "cover" of I if

I ⊆ ∪
j∈S

Aj

The set covering problem (SCP) is the problem of finding the cover of I having minimum

cost. Formally, the problem can be defined as follows:

Given a vector c and and an m-row by n-column zero-one matrix A, where

cj = cost of column j (cj > 0);

aij = 1 if row i is covered by column j,

= 0 otherwise,

SCP is the problem of selecting vector x, where

xj = 1 if set Pj is in the cover,

= 0 otherwise,

in order to

Minimize Σ
j=1

n

cj xj (1)

subject to Σ
j=1

n

aij xj ≥ 1 , i = 1,...,m (2)

xj ∈ (0,1) , j = 1,...,n (3)

We will use the words row and column interchangeably with point and set, respectively.

Constraint (2) ensures that each row is covered by at least one column; if the inequalities in

equation (2) are replaced by equalities, the resulting problem is called the set partitioning

problem (SPP). In this paper we will restrict our attention to the set covering problem.

Real-world applications of the SCP abound, and usually fall into two categories:

3

Lagrangian Heuristics for SCP 4/9/98

1. Correlated-cost problems, displaying a positive correlation between the costs of the

columns and the number of rows each covers.

2. Unicost problems, i.e., cj = 1, j ∈J.

Examples of SCP applications include airline crew scheduling [1, 2, 14, 15, 20],

location of emergency facilities [17, 18, 22, 24], routing problems [13], bus driver

scheduling [15], truck deliveries [4], assembly line balancing [14] and information retrieval

[9].

A number of optimizing algorithms for the SCP have been described in the literature

[3, 5, 8, 10, 16], typically based on tree-search procedures, but such algorithms are not

computationally manageable for large-scale problems. It is clear that, given the lack of

polynomial-time optimizing algorithms, there is a need for a computationally effective

heuristic algorithm capable of producing good-quality (near-optimal) solutions with

considerably less effort. The so-called Lagrangian heuristic algorithm demonstrated by

J.E. Beasley [6] looked promising and was reported to outperform the heuristic algorithm

of Balas and Ho [3] and two heuristic algorithms of Vasko and Wilson [23]. The average

deviation from optimal for the Lagrangian heuristic algorithm was reported to be only

0.638%, compared to 7.416% for the Balas and Ho algorithm and 6.428% and 3.311% for

those of Vasko and Wilson. However, the test problems had randomly-generated costs

which may bear little resemblance to many real world applications. We will modify his

algorithm so as to improve its performance in solving unicost problems and correlated-cost

problems, problems which in practice prove to be much more difficult to solve than his

random-cost problems. Details of Beasley's and our heuristics are presented in the next

section.

Outline of the Algorithms

In this section, we present Lagrangian heuristic algorithms based upon Lagrangian

relaxation of the covering constraints (equation (2)) with subgradient optimization being

4

Lagrangian Heuristics for SCP 4/9/98

used to adjust the Lagrange multipliers (optimal dual variables). Each Lagrangian

relaxation provides a lower bound for the SCP, and subgradient optimization is used in an

attempt to maximize this lower bound.

Readers unfamiliar with Lagrangian relaxation and subgradient optimization should

refer to Fisher [11, 12].

By relaxing constraint (2) of the SCP and defining Lagrange multipliers ti (≥ 0) for

each row i (i = 1,..., m) associated with constraint (2), we have a Lagrangian relaxation

problem (LRP) as follows:

Minimize Σ
j=1

n

cj xj + ∑
i = 1

m

ti (1 - Σ
j=1

n

aij xj)

or Minimize Σ
j=1

n

(cj - ∑
i = 1

m

ti aij) xj + ∑
i = 1

m

ti (4)

subject to xj ∈ (0,1) , j = 1,...,n (5)

Let Cj represent the reduced cost of column j (j = 1,..., n), i.e.,

Cj = (cj - ∑
i = 1

m

ti aij),

and let ZLB represent the optimal objective value of the LRP above. Computing ZLB is

trivial, that is, we select column j if its reduced cost Cj ≤ 0.

The solution x of the problem LRP may not be feasible for SCP, but adjusting this

solution by adding or removing columns may provide good solutions. A heuristic

algorithm which makes use of solution x of LRP and/or the Lagrangian multipliers ti will

be referred to as a Lagrangian heuristic algorithm.

To obtain good (perhaps optimal) solutions of the primal, i.e., equations (1) - (3),

we will use a heuristic algorithm at each iteration of the dual search. In this paper we will

describe five Lagrangian heuristic algorithms, all of which begin with the solution to the

5

Lagrangian Heuristics for SCP 4/9/98

Lagrangian relaxation problem, add sets to the cover to gain feasibility if necessary, and

remove superfluous sets in the solution. Beasley’s algorithm [6] will be referred to as

heuristic #1 in this paper for ease of reference. Our other 4 heuristic algorithms are

essentially extensions of Beasley’s, and, like his algorithm, use not only the solution

(perhaps infeasible) of the Lagrangian relaxation. Unlike his algorithm, however, our

algorithms also use the information available from the Lagrangian multipliers.

These five heuristic algorithms differ in the criteria for choosing a set to be added

(in order to cover a point not currently covered) and for removing a superfluous set:

• Heuristic #1 (of Beasley), after identifying an uncovered point, adds the set which covers

the point at lowest cost. This is repeated until a feasible cover is obtained, after which the

algorithm removes the superfluous sets (if any) having highest cost.

• Heuristic #2, after identifying an uncovered point, considers the q least-cost sets

covering the point as candidates and, of these, adds to the cover the set which has the

lowest "reduced cost". Like heuristic #1, when a feasible cover is obtained, it removes

the superfluous sets having highest cost. We use a large value of q in order to guarantee

that all potential candidate columns that could be added to the cover are considered,

although a small value of q ("partial pricing") could be used to save some computational

effort, possibly at the expense of a higher cost solution.

• Heuristic #3, like heuristic #2, uses "partial pricing" by selecting, from q candidates

which cover a point, the set having lowest "reduced cost", but for this purpose a

"modified reduced cost" is computed with zero replacing the Lagrange multipliers of

points already covered. Like heuristic algorithms #1 and #2, it removes the superfluous

set with highest cost.

• Heuristic #4, an extension of heuristic #2, differs from heuristic #2 only in that, when

selecting a superfluous set to be removed from the cover, the superfluous set having

highest reduced cost is selected.

6

Lagrangian Heuristics for SCP 4/9/98

• Heuristic #5, an extension of heuristic #3, differs from heuristic #3 only in that selection

of a superfluous set to be removed from the cover is again based upon the modified

reduced cost.

When choosing a column to be added to the cover, the consideration of reduced

cost (as used in heuristic #2 and #4) and the modified reduced cost (as used in heuristic #3

and #5) seem to be more effective than consideration of the original cost (as used in

heuristic #1). In a sense, the use of reduced cost makes the heuristic less "myopic". Recall

that the reduced cost Cj = (cj - ∑
i = 1

m

ti aij). Hence, the higher the number of rows which

a certain column covers, the lower its reduced cost is likely to be. While several points

might be left uncovered in the solution of LRP, all of these heuristics are myopic in that

they will attempt to cover these points one at a time. When, in order to cover a certain

point, we choose to add a column with the lowest reduced cost to the cover, we are likely

to be better off, since that column tends to cover more rows than do other columns having

higher reduced costs.

The same reasoning suggests the use of the modified reduced cost in Heuristics #3

and #5. But here, we go one step further by not giving credit, when calculating the

reduced cost of a candidate column, for covering rows which are covered by other columns

already included in the cover. That is, the substitution of zero for the Lagrange multipliers

(ti) of rows already covered will make the modified reduced cost of that column higher and

therefore less attractive when choosing the next set to be added to the cover.

Before we go into the details of these algorithms, we would like to point out that

rows and columns of the test problems can be pre-arranged in a systematic way for more

computationally efficient performance without loss of generality as follows:

• First, we order the columns in ascending cost order, with columns of equal cost being

ordered in descending order of the number of rows they cover. In essence this means

that for any row i the column min { j | aij = 1, j = 1,...,n } is the "best" column to use in

covering row i.

7

Lagrangian Heuristics for SCP 4/9/98

• Next, we order the rows in ascending order of the number of columns covering them.

This idea arises from the intuition that we are better off trying to cover first that row

which has the fewest columns covering it. Thus, if in actual computation we always start

processing data from the first row to the last row, then the first row should be the row

with a minimum number of columns covering it.

Now, let ZMAX represent the maximum lower bound found, ZUB the best feasible

solution found and Pk the lower bound when column k (k = 1,...,n) is forced to be in the

solution. Denote by minq X the set of q smallest values of the set X, and argminq X the

indices of these values. The details of the algorithm can be presented in the following

steps:

Step 1. Initialize ZMAX = -∞, ZUB = ∞, Pj = c j (j = 1,..., n) and ti = min [cj | aij = 1,

j∈J] for each i∈I.

Step 2. Solve LRP with the current set of multipliers (ti) and denote the solution by ZLB

and xj , j∈J. Update ZMAX by ZMAX = max(ZMAX , ZLB).

Step 3. Apply one of the heuristic algorithms to construct a feasible solution S to the

original SCP. Denote the cost of this solution, which is an upper bound on the optimal

solution, by ZUB.

Step 4. Stop if  ZMAX  = ZUB (ZUB is then the optimal solution), where  a  denotes

the ceiling value of a, i.e., the smallest integer greater than or equal to a.

Step 5. Considering the original SCP [equations (1) - (3) above] and the corresponding

LRP [equations (4) and (5) above] it is clear that imposing the additional constraint that a

particular column k must be in the cover (xk = 1) results in an SCP whose corresponding

8

Lagrangian Heuristics for SCP 4/9/98

lower bound is ZLB + Ck if xk = 0 in the solution of LRP, and ZLB otherwise (i.e., if xk =

1). Hence we can update Pk using

Pk = max (Pk , ZLB + Ck), if xk = 0, k = 1,...,n. (6)

Pk = max (Pk , ZLB), if xk = 1, k = 1,...,n. (7)

We can therefore remove columns from further consideration by setting

ck = ∞, if Pk > ZUB, k = 1,...,n. (8)

since plainly a column k with Pk (the lower bound corresponding to an optimal solution

containing column k) greater than ZUB cannot be in an improved feasible solution.

Step 6. Calculate the subgradient (G) of the dual objective using

Gi = 1 - Σ
j=1

n

aij xj , i = 1,...,m. (9)

We found it computationally useful to adjust the components of the subgradient, if they

were not going to effectively contribute to the update of the multipliers, in the following

manner:

Gi = 0, if ti = 0 and Gi < 0 , i = 1,...,m. (10)

Step 7. Stop, if (∑
i = 1

m

(Gi)2) = 0 since in this case the Lagrangian dual has been

optimized.

Step 8. Define a step size T by

T = f (1.05 ZUB - ZLB) / (∑
i = 1

m

(Gi)
2) (11)

where f = 2 initially. If ZMAX has not increased in the last 30 iterations of the subgradient

procedure with the current value of f then f is halved. This approach to deciding the value

of f is modeled on that of Fisher [11, 12]. Equation (11) is the standard expression for

step size in subgradient optimization except for the factor 1.05 which we have included to

be consistent with the results of Beasley [6], who states that he used this value because

9

Lagrangian Heuristics for SCP 4/9/98

computationally he found it useful in ensuring that T does not become too small as the gap

between ZUB and ZLB closes.

Step 9. Stop if the algorithm reaches the maximum number of iterations allowed (an

arbitrarily decided stopping criterion). Here we terminated after 1000 iterations. Note that

we used this maximum number of iterations as a stopping criterion rather than f ≤ 0.005 as

did Beasley [6], because we felt that it permits a more fair comparison of the results from

different heuristic algorithms.

Step 10. Update the Lagrange multipliers using

ti = max (0 , ti + TGi), i = 1,...,m (12)

(the standard expression for updating nonnegative Lagrange multipliers) and go to step (2)

to solve the new LRP problem.

The Lagrangian heuristic algorithms which might be utilized in step 3 are as follows:

Heuristic #1 [9]

(a) Let S = {j | xj = 1, j = 1,...,n } be the solution to LRP.

(b) Select a row i which is uncovered (i.e., Σ
j=1

n

aij xj = 0). If none, go to (d).

(c) Add to S the column corresponding to min {j | aij = 1, c j < ∞, j = 1,...,n }. Go to (b).

(d) Consider each column j ∈ S in descending index (j) order; if S - {j} is a feasible

solution to the SCP, let S = S - {j}.

(e) Update ZUB by ZUB = min (ZUB , ∑
j ∈ S

cj).

Heuristic #2

(a) Let S = { j | xj = 1, j = 1,...,n } be the solution to LRP.

10

Lagrangian Heuristics for SCP 4/9/98

(b) Select a row i which is uncovered (i.e., Σ
j=1

n

aij xj = 0). If none, go to (d).

(c) Add to S the column corresponding to min { Ch | h ∈ argminq [j | aij = 1, cj < ∞,

j∈J]}. Go to (b).

(d) Consider each column j ∈ S in descending index (j) order; if S - {j} is a feasible

solution to the SCP, let S = S - {j}.

(e) Update ZUB by ZUB = min (ZUB , ∑
j ∈ S

cj).

Heuristic #3

(a) Let S = { j | xj = 1, j = 1,...,n } be the solution to LRP.

(b) Select a row i which is uncovered (i.e., Σ
j=1

n

aij xj = 0). If none, go to (d).

(c) Add to S the column corresponding to min { Ch | h ∈ argminq [j | aij = 1, c j < ∞, j∈J]}

and for every j∈J such that aij=1, replace Cj by Cj + ti . Go to (b).

(d) Consider each column j ∈ S in descending index (j) order; if S - {j} is a feasible

solution to the SCP, set S = S - {j}

(e) Update ZUB by ZUB = min (ZUB , ∑
j ∈ S

cj).

Heuristic #4

(a) Let S = { j | xj = 1, j = 1,...,n } be the solution to LRP.

(b) Select a row i which is uncovered (i.e., Σ
j=1

n

aij xj = 0). If none, go to (d).

(c) Add to S the column corresponding to min { Ch | h ∈ argminq [j | aij = 1, cj < ∞,

j∈J]}. Go to (b).

(d) Consider each column j ∈ S in descending "reduced cost" (Cj) order; if S - {j} is a

feasible solution to the SCP, set S = S - {j}.

(e) Update ZUB by ZUB = min (ZUB , ∑
j ∈ S

cj).

11

Lagrangian Heuristics for SCP 4/9/98

Heuristic #5

(a) Let S = { j | xj = 1, j = 1,...,n } be the solution to LRP.

(b) Select a row i which is uncovered (i.e., Σ
j=1

n

aij xj = 0). If none, go to (d).

(c) Add to S the column corresponding to min { Ch | h ∈ argminq [j | aij = 1, c j < ∞, j∈J]}

and for every j∈J such that aij=1, replace Cj by Cj + ti . Go to (b).

(d) Consider each column j ∈ S in descending "modified reduced cost" (Cj) order; if S -

{j} is a feasible solution to the SCP, set S = S - {j}.

(e) Update ZUB by ZUB = min (ZUB , ∑
j ∈ S

cj).

Note that, in heuristic #1, the use of the column ordering when adding to the cover

is ineffective with the unicost problems, since this ordering would not be sufficiently

discriminating between columns to give good-quality results. In this case, heuristics #2-5,

which are based upon the reduced costs rather than the original costs, perform better, as

will be shown in the computational results in the next section.

Computational Results

The four new Lagrangian heuristics presented in this paper together with Beasley's

Lagrangian heuristic were programmed in FORTRAN 77 and implemented on Hewlett

Packard/Apollo DN 10000 workstations supported by the Iowa Computer-Aided

Engineering Network (ICAEN). In order to compare the performance of these 5

Lagrangian heuristic algorithms, we coded them with the same program structure without

utilizing vector or parallel processing capabilities. We have solved each of 50 test problems

using each of these 5 Lagrangian heuristic algorithms. "Partial pricing" was not used in

these tests, i.e., q= ∞ in heuristic algorithms #2 through 5.

Table 1 presents a summary of the test problems. Problem sets 4 and 6 were taken

from Beasley [6, 7]. These problems were created by Beasley using the scheme of Balas

12

Lagrangian Heuristics for SCP 4/9/98

and Ho [3], namely, column costs (cj) are integers randomly generated, every column

covers at least one row, and every row must be covered by at least two columns.

Problem sets 4c and 6c were modifications of the original problem sets 4 and 6,

having the same A matrices but with the costs randomly generated so as to have high

correlations between the cost of a column and the number of rows covered by that column.

(Coefficients of correlation are in the range of 0.75 - 0.90.) Generating the costs for these

problem sets was done so as to reflect the property of many real world applications that the

marginal unit cost to cover more rows is decreasing as the number of rows already covered

by that column is increasing. For example, in a facility location application of SCP, there

are fixed cost and variable cost elements incurred in setting up a facility to serve the demand

points.

Problem sets 4u and 6u were also modifications of the original problem sets 4 and

6, having the same A matrices but with uniform costs of 1 for all the columns.

Table 1. Test problem details

Problem Number Number Density* Cost characteristics # of problems
 set of rows of columns (%) in problem set

4 200 1000 2 Randomly generated between 1- 100 10
6 200 1000 5 " " 5
4c 200 1000 2 Correlated with # of rows covered 10
6c 200 1000 5 " " 10**

4u 200 1000 2 Unicosts of 1 10
6u 200 1000 5 " 5

* Note that the density of a SCP is the percentage of ones in the (aij) matrix.

** Note that there are 10 test problems in problem set 6c in which 5 of them have cost values generated
from one seed number while the other 5 have cost values generated from the other seed number.

The computational results obtained from the Lagrangian heuristic algorithms were

compared and summarized in Tables 2 - 6, which include:

• ZMAX : value of the greatest lower bound found

• Lowest ZUB : value of the best feasible solution found

13

Lagrangian Heuristics for SCP 4/9/98

• Avg of ZUB : average value of the feasible solutions at each iteration

• CPU Time : total computation time in Apollo DN 10000 seconds excluding

input/output time

For more complete results, see Techapichetvanich [21] where the following results are also

presented:

• Iteration # where the best feasible solution was found

• Total number of subgradient iterations run

• Frequency of the best feasible solution found

• Total number of columns removed at the end of Lagrangian heuristic algorithm

Table 2 compares the best upper bounds found by each Lagrangian heuristic

algorithm for problem sets 4 and 6. In Table 3 is a similar comparison for problem sets 4c

and 6c, and in Table 4 for problem sets 4u and 6u. As in Beasley [6], we refer to the first

problem in problem set 4 as problem 4.1, while problem 4.2 refers to the second problem

in set 4, etc.. This applies to all other problem sets as well. The optimal solutions for

problem sets 4 and 6 are reported by Beasley [5], while they are unknown for problem sets

4c, 6c, 4u and 6u. (Here, we have only intended to compare the performance of our 4

Lagrangian heuristic algorithms to Beasley's Lagrangian heuristic algorithm; thus, we did

not require the optimal solutions of these problem sets.) Table 5 shows the mean of the

ratio of CPU time taken by our 4 Lagrangian heuristic algorithms to that taken by Beasley’s

Lagrangian heuristic algorithm (#1). Table 6 presents the mean of the ratio of the average

of ZUBs from our 4 Lagrangian heuristic algorithms to the average ZUB of Beasley’s

algorithm.

Table 2. Summary of computational results for problem sets 4 and 6

Problem Lowest ZUB found from Lagrangian heuristic algorithm #

Number ZMAX 1 2 3 4 5

4.1 428.61 429* (389) 429* (236) 429* (146) 429* (236) 429* (146)

14

Lagrangian Heuristics for SCP 4/9/98

4.2 511.14 512* (224) 512* (174) 512* (196) 512* (350) 512* (196)
4.3 515.83 516* (136) 516* (152) 516* (79) 516* (408) 516* (158)
4.4 493.99 495 494* 495 494* 495
4.5 511.56 512* (261) 512* (225) 512* (219) 512* (173) 512* (180)
4.6 557.23 561 560 560 561 560
4.7 429.39 430* (317) 430* (196) 430* (279) 430* (188) 430* (279)
4.8 488.67 492 (636) 492 (208) 492 (349) 492 (227) 492 (512)
4.9 638.39 641 (570) 641 (469) 641 (443) 641 (338) 641 (443)
4.10 513.25 514* (141) 514* (140) 514* (130) 514* (10) 514* (130)

6.1 133.11 140 141 139 141 139
6.2 140.39 150 149 148 150 148
6.3 139.91 145 (198) 145 (15) 145 (103) 145 (21) 145 (103)
6.4 128.91 131 (123) 131 (107) 131 (291) 131 (119) 131 (209)
6.5 153.19 165 165 161 168 161

Note that * associated with the lowest ZUBs in Table 2 indicates that that ZUB converged with
ZMAX which means that it is optimal value. Also, the boldface number, e.g., 560 , indicates
that that ZUB is optimal value but did not converge with ZMAX.

Note also that ZMAXs from each Lagrangian heuristic algorithm for the same problem are
almost identical. The ceilings of ZMAX (ZMAX) from each Lagrangian heuristic algorithm
are mostly the same. Here in Tables 2 - 4, we show the largest one.

The number in parenthesis following the lowest ZUB represents the iteration# that that ZUB
was first found. Here we show only in the problems where all 5 Lagrangian heuristic
algorithms yield the same solution.

15

Lagrangian Heuristics for SCP 4/9/98

Table 3. Summary of computational results for problem
sets 4c and 6c

Problem Lowest ZUB found from Lagrangian heuristic #

Number ZMAX 1 2 3 4 5

4.1c 2356.76 2958 2902 2774 2874 2774
4.2c 2386.27 2999 2871 2813 2898 2826
4.3c 2372.95 2968 2926 2864 2999 2864
4.4c 2397.40 2927 2847 2814 2992 2814
4.5c 2408.19 3073 2981 2911 2985 2855
4.6c 2361.30 2978 2902 2844 2950 2844
4.7c 2435.18 3113 3035 2912 3027 2885
4.8c 2348.15 2917 2900 2770 2877 2732
4.9c 2346.22 2925 2895 2855 2889 2855
4.10c 2423.49 3085 3023 2920 3069 2920

6.1'c 2170.63 3854 3837 3092 3965 3154
6.2'c 2169.93 3766 3746 3162 3925 3162
6.3'c 2170.52 3870 3900 3139 3957 3139
6.4'c 2172.29 3742 3894 3223 4032 3223
6.5'c 2175.30 3784 3536 3193 3907 3136

6.1"c 2143.45 3504 3409 3240 3523 3225
6.2"c 2157.90 3474 3445 3376 3603 3338
6.3"c 2145.67 3494 3461 3400 3577 3233
6.4"c 2154.96 3529 3451 3367 3645 3367
6.5"c 2162.84 3593 3448 3409 3670 3409

16

Lagrangian Heuristics for SCP 4/9/98

Table 4. Summary of computational results for problem
sets 4u and 6u

Problem Lowest ZUB found from Lagrangian heuristic #

Number ZMAX 1 2 3 4 5

4.1u 32.78 47 44 45 44 45
4.2u 31.68 45 41 41 42 42
4.3u 32.43 46 42 44 43 43
4.4u 33.25 47 45 47 46 46
4.5u 32.77 45 43 43 41 44
4.6u 32.22 47 42 44 43 43
4.7u 33.50 45 43 42 43 43
4.8u 31.74 44 43 44 43 45
4.9u 32.86 48 42 44 44 44

4.10u 33.28 44 44 45 43 45

6.1u 14.76 26 25 25 26 26
6.2u 14.26 26 24 25 24 25
6.3u 14.84 28 26 26 26 25
6.4u 14.66 27 26 26 25 26
6.5u 14.88 26 25 25 25 26

Table 5. Summary of mean and standard deviation of the ratio of the CPU time from
Lagrangian heuristics #2 to #5 to the CPU time from Lagrangian heuristic #1

Problem (Mean of [CPU time i / CPU time 1] , Std. dev. of [CPU time i / CPU time 1])

 Sets i = 2 i = 3 i = 4 i = 5
4 (0.93 , 0.21) (1.31 , 0.17) (1.23 , 0.32) (1.41 , 0.19)
6 (1.05 , 0.02) (1.52 , 0.02) (1.12 , 0.04) (1.55 , 0.02)
4c (1.10 , 0.01) (1.41 , 0.04) (1.43 , 0.04) (1.49 , 0.03)
6c (1.06 , 0.02) (1.42 , 0.08) (1.46 , 0.08) (1.54 , 0.06)
4u (1.07 , 0.01) (1.32 , 0.01) (1.32 , 0.04) (1.48 , 0.04)

 6u (1.06 , 0.01) (1.41 , 0.01) (1.27 , 0.04) (1.60 , 0.05)

Table 6. Summary of mean and standard deviation of the ratio of the average ZUB of
Lagrangian heuristics #2 to #5 to the average ZUB of Lagrangian heuristic #1

Problem (Mean of [Avg of ZUB i / Avg of ZUB 1] , Std. dev. of [CPU time i / CPU time 1])

 Sets i = 2 i = 3 i = 4 i = 5
4 (1.002 , 0.010) (0.998 , 0.009) (1.037 , 0.021) (1.000 , 0.010)
6 (1.019 , 0.010) (1.013 , 0.006) (1.087 , 0.029) (1.013 , 0.007)
4c (0.995 , 0.012) (0.967 , 0.006) (1.057 , 0.016) (0.966 , 0.005)
6c (1.018 , 0.010) (0.977 , 0.005) (1.105 , 0.020) (0.978 , 0.005)
4u (0.853 , 0.018) (0.873 , 0.020) (0.861 , 0.018) (0.887 , 0.019)

 6u (0.884 , 0.020) (0.890 , 0.023) (0.900 , 0.015) (0.933 , 0.008)

17

Lagrangian Heuristics for SCP 4/9/98

In Table 2, we observe that, for the random-cost problems (sets 4 and 6), our

Lagrangian heuristics (#2 - #5) seem to give a better solution, i.e., lower ZUB, compared

to Beasley's Lagrangian heuristic (#1) for almost all of the problems. Based on the CPU

time taken (see Table 5), Lagrangian heuristic #2 appears attractive because of generally

lower CPU time. Another interesting observation is that of the iteration number in which

the lowest ZUB was first found (reported by the numbers in parentheses). For those test

problems where the same lowest ZUB is found by all 5 Lagrangian heuristics, Lagrangian

heuristics #2-5 tended to find the best ZUB earlier than did Beasley's. Note also that

Lagrangian heuristic #3 and its extension, Lagrangian heuristic #5, tended to find better

solutions than did the other Lagrangian heuristics for problem set 6 where the data matrix is

more dense.

A result which was first surprising is that, for some problems, the average ZUBs

(over all iterations) from Lagrangian heuristics #2-5 seem to be worse than those of

Beasley's, even though the best feasible solutions found from ours are better. (See Table

6.) A likely explanation of this result is that Lagrangian heuristic #1 is insensitive to

Lagrange multipliers, i.e., it is not affected by the change in multipliers when choosing a

column to cover a row (see step 3(b) for Lagrangian heuristic #1). This results in a rather

low number of distinct feasible solutions evaluated, and thus a more stable average of

ZUBs, i.e., these values do not vary so much as from iteration to iteration. By contrast,

our 4 Lagrangian heuristics are sensitive to the change in multipliers since in step (c) when

we choose a column to cover a row, we consider the reduced costs which are very sensitive

to the multipliers. This causes the ZUB in each iteration to vary, resulting in higher

average values. But by evaluating a greater variety of feasible solutions, the search is

diversified and we are more likely to find a better ZUB, as our results show.

From Table 3, we observe that, for the correlated-cost problems, Lagrangian

heuristics #2, #3, and #5 outperformed Beasley's in terms of the quality of solution found,

with the best solutions generally found by either #3 or #5. On the other hand, Lagrangian

18

Lagrangian Heuristics for SCP 4/9/98

heuristic #4 does not look promising here. Lagrangian heuristics #2-5 took more CPU

time than did Beasley's, as we expected, because of a more complicated procedure in step

(c) and (d) of these Lagrangian heuristics. Nonetheless, this additional CPU time is

warranted by the much better solutions obtained.

The average of the ZUBs of Lagrangian heuristics #3 and #5 are evidently better

than that of Lagrangian heuristic #1 due to much better solutions found. However, this is

not true for Lagrangian heuristic #2 for which the best ZUBs found are not really much

better than those from Lagrangian heuristic #1 and so the vacillating behavior described

above still dominated.

From Table 4, we observe that, for the unicost problems, at least one of our 4

Lagrangian heuristics gave better solutions than Beasley's in each of the test problems.

Lagrangian heuristic #2 looks most promising. The results here have confirmed Beasley's

report of poor performance of his Lagrangian heuristic for unicost problems. Again, the

CPU times taken from our 4 Lagrangian heuristics are greater than those of Beasley's;

however, the averages of ZUBs from our 4 Lagrangian heuristics are better than those

found by Beasley's heuristic.

Note that for all of the correlated-cost and unicost problems, a gap remains between

the ZMAXs and the lowest ZUBs; therefore, optimality cannot be verified. The gaps in

these problems are fairly large, and are the sums of the gap between ZUB and the

(unknown) optimum, and the gap between the optimum and ZMAX. Since the ZMAXs

found from these 5 Lagrangian heuristics are almost equal for most of the test problems

here, this suggests that we cannot significantly improve the ZMAX. (Even running these 5

Lagrangian heuristics for 4000 more iterations still yielded negligible improvement in

ZMAXs and no improvement in ZUBs.) Hence, it appears that the gap can be narrowed

only by reducing the ZUB (given that the current lowest ZUB is not yet optimal).

Additional approaches may be required to accomplish this task. One of the potential

approaches with which we experimented is tabu search. Details regarding a tabu search

19

Lagrangian Heuristics for SCP 4/9/98

procedure for the SCP can be found in Techapichetvanich [34] and will be reported in a

later paper.

Conclusions

It is clear that our four Lagrangian heuristic algorithms presented in this paper have

an equal, or superior, performance to the algorithm of Beasley [6] for almost all of these

reasonably sized test problems. This is especially true for the correlated-cost and unicost

problems, which more nearly resemble real world applications and prove to be much harder

to solve than random-cost problems because of less dominance among the columns.

Which of our 4 Lagrangian heuristic algorithms should be used to solve a particular

set-covering problem is dependent on the nature of that problem. If it is a correlated-cost

problem, our Lagrangian heuristics #3 and #5 tend to give the best solutions. If it is a

unicost problem, any of our 4 Lagrangian heuristics should provide a better solution on the

majority of the test problems with a high likelihood of Lagrangian heuristic #2 being the

best one. If it is a random-cost problem, Lagrangian heuristic #2 seems to be a good

choice in terms of the quality of solution and CPU time required.

References

 1. Arabeyre, J. P., Fearnley, J., Steiger, F. C., and Teather, W., "The Airline Crew
Scheduling Problem: A Survey", Transportation Science, 3(2), pp. 140-163 (1969).

 2. Baker, E. K., Bodin, L. D., Finnegan, W. F., and Ponder, R. J., "Efficient Heuristic
Solutions to an Airline Crew Scheduling Problem", AIIE Transactions, 11 , pp. 79-85
(1979).

 3. Balas, E., and Ho, A., "Set Covering Algorithms Using Cutting Planes, Heuristics,
and Subgradient Optimization: A Computational Study", Mathematical Programming
Study, 12 , pp. 37-60 (1980).

 4. Balinski, M., and Quandt, R., "On an Integer Program for a Delivery Problem",
Operations Research, 12(2), pp. 300-304 (1964).

 5. Beasley, J. E., "An Algorithm for Set-Covering Problems", European Journal of
Operational Research, 31 , pp. 85-93 (1987).

20

Lagrangian Heuristics for SCP 4/9/98

 6. Beasley, J. E., "A Lagrangian Heuristic for Set-Covering Problems", Naval Research
Logistics, 37 , pp. 151-164 (1990).

7. Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail.
Journal of the Operational Research Society, 41(11), pp. 1069-1072 (1990).

8. Christofides, N., and Korman, S., "A Computational Survey of Methods for the Set
Covering Problem", Management Science, 21(5), pp. 591-599 (1975).

9. Day, R. H., "On Optimal Extracting from a Multiple File Data Storage System: An
Application of Integer Programming", Operations Research, 13 , pp. 482-494 (1965).

10. Etcheberry, J., "The Set-Covering Problem: A New Implicit Enumeration Algorithm",
Operations Research, 25(5), pp. 760-772 (1977).

11. Fisher, M. L., "The Lagrangian Relaxation Method for Solving Integer Programming
Problems", Management Science, 27(1), pp. 1-18 (1981).

12. Fisher, M. L., "An Applications Oriented Guide to Lagrangian Relaxation", Interfaces,
15(2), pp. 10-21 (1985).

13. Foster, B. A., and Ryan, D. M., "An Integer Programming Approach to the Vehicle
Scheduling Problem", Operations Research Quarterly, 27 , pp. 367-384 (1976).

14. Marsten, R. E., "An Algorithm for Large Set Partitioning Problems", Management
Science, 20 , pp. 774-787 (1974).

15. Marsten, R. E., and Shepardson, F., "Exact Solutions of Crew Scheduling Problems
Using the Set Partitioning Problem: Recent Successful Applications", Networks, 11 ,
pp. 165-177 (1981).

16. Paixao, J., "Algorithms for Large Scale Set Covering Problems", Ph.D. thesis, School
of Management, Imperial College, London SW7 2AZ, England, 1984.

17. Patel, N., "Locating Rural Social Service Centers in India", Management Science,
25(1), pp. 22-30 (1979).

18. Revelle, C., Marks, D., and Liebman, J. C., "An Analysis of Private and Public
Sector Location Models", Management Science, 16 , pp. 692-707 (1970).

19. Salveson, M. E., "The Assembly Line Balancing Problem", Journal of Industrial
Engineering, 6 , pp. 18-25 (1955).

20. Spitzer, M., "Solution to the Crew Scheduling Problem", presented at the first
AGIFORS symposium, October 1961.

21. Techapichetvanich, K., "Investigation of Lagrangian Heuristic and Tabu Search
Algorithms for Set Covering Problems", Ph.D. thesis, Department of Industrial
Engineering, The University of Iowa, Iowa City, Iowa, USA, 1993.

22. Toregas, C., Swain, R., ReVelle, C., and Bergman, L., "The Location of Emergency
Service Facilities", Operations Research, 19(6), pp. 1363-1373 (1971).

21

Lagrangian Heuristics for SCP 4/9/98

23. Vasko, F. J., and Wilson, G. R., "An Efficient Heuristic for Large Set Covering
Problems", Naval Research Logistics Quarterly, 31 , pp. 163-171 (1984).

24. Walker, W., "Application of the Set Covering Problem to the Assignment of Ladder
Trucks to Fire Houses", Operations Research, 22 , pp. 275-277 (1974).

22

