QUASI-CONJUGACY, QUASI-SUBGRADIENTS, and Surrogate Duality in Nonconvex Programming

Dennis L. Bricker
Department of Industrial Engineering The University of Iowa Iowa City, Iowa 52242

Presented at the ORSA/TIMS Annual Meeting, November 1980, in Colorado Springs.

Conjugate functions have played an important role in the theory of convex programming. (For example, see [4].) An analogous role in quasi-convex programming is played by quasi-conjugate functions. Conjugates relate to epigraph supports, whereas quasi-conjugates relate to level set supports and barriers; conjugate functions provide a basis for Lagrangian duality, whereas quasi-conjugate functions provide a basis for surrogate duality. In this paper, we shall briefly survey the existing theory of quasiconjugacy and surrogate duality as developed by Greenberg and Pierskalla ([2] and [3]) as it relates to nonconvex programming, interpreting it geometrically, and shall then add several extensions to this theory.

QUASI-CONJUGATES

A hyperplane in E^{n} is a set, with parameters $\mathrm{u} \in \mathrm{E}^{\mathrm{n}}, \mathrm{u} \neq 0$, and $\mathrm{c} \in \mathrm{E}^{1}$, of the form

$$
\begin{equation*}
H_{u}^{c}=\left\{x \in E^{n}:(u, x)=c\right\} \tag{1.1}
\end{equation*}
$$

where (u, x) and $u x$ will interchangeably denote the inner product of u and x. The parameter u determines the orientation of H_{u}^{c} and may be referred to as its direction vector. In particular, the hyperplane with direction vector u passing through the fixed point x^{0} is $H_{u}^{u u^{0}}$. (See Figure 1.)

A hyperplane H_{u}^{c} determines two closed halfspaces, one of which we will denote by

$$
\begin{equation*}
\mathrm{H}_{u}{ }^{c}=\left\{x \in E^{n}:(u, x) \geq c\right\} \tag{1.2}
\end{equation*}
$$

If f is a function from E^{n} into the (extended) real line, $E^{1}=[-\infty,+\infty]$, i.e., a functional, then we denote its c-level-sets by

$$
\begin{equation*}
L_{c} f=\left\{x \in E^{n}: f(x) \leq c\right\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{c}^{o} f=\left\{x \in E^{n}: f(x)<c\right\} \tag{1.4}
\end{equation*}
$$

Figure 2 denotes $L_{c} f$ for a case in which $\mathrm{n}=1$.

Our interest in level sets results chiefly from the fact that quasi-convex functions may be defined to be functions all of whose level sets are convex.

For many functions, $L_{c} f=\mathrm{cl} L_{c}^{o} f$ (the closure of $L_{c}^{0} f$), but such is not always the case, as demonstrated by Figure 3. Here $L_{c}^{o} f \subset L_{c} f$, but it is neither the case that cl $L_{c}^{o} f=L_{c} f$, nor even that $\mathrm{cl} L_{c}^{o} f \subset L_{c} f$. Note that f is not lower semi-continuous, nor explicitly quasi-convex (because of the "flat" spot in the graph).

Figure 4 depicts a c-level-set of a function defined on E^{2}. The boundaries of level sets are simply the contour curves of the function. Given a point $\mathrm{x} \in \mathrm{E}^{\mathrm{n}}$, a level set of particular interest is $L_{f(x)} f$, depicted in Figures $5 \mathrm{a} \& \mathrm{~b}$. In Figure 5 b we note that x need not be a boundary point of $L_{f(x)} f$.

We next define the z-quasi-conjugate function $f_{z}^{+}: E^{n} \rightarrow E^{1}$ where $\mathrm{z} \in \mathrm{E}^{1}$ and

$$
\begin{equation*}
f_{z}^{+}(u)=z-\inf \{f(x):(u, x) \geq z\} \tag{1.5}
\end{equation*}
$$

Note that it is helpful to consider f_{z}^{+}as a function of direction vectors, i.e.,

$$
\begin{equation*}
f_{z}^{+}(u)=z-\inf \left\{f(x): x \in \mathrm{H}_{u}{ }^{z}\right\} . \tag{1.6}
\end{equation*}
$$

If f is a quasi-convex function, as in Figure 6, and H_{u}^{z} is a supporting hyperplane for some level set $L_{c} f$, then $f_{z}^{+}(u)=z-c$, provided that the global minimum point $\mathrm{x}^{*}=\operatorname{argmin} f(x)$ does not lie in $\mathrm{H}_{u}{ }^{z}$ (in which case $f_{z}^{+}(u)=z-f\left(x^{*}\right)$).

One important property which should be noted is that f_{z}^{+}is quasi-convex (without assuming any properties of f).

We now consider the second z-quasi-conjugate $\left(f_{z}^{+}\right)_{z}^{+}(x)$, defined in the obvious way as the z-quasi-conjugate of f_{z}^{+}, and define the normalized second quasi-conjugate of f as

$$
\begin{equation*}
f^{++}(x)=\sup _{z \in E^{1}}\left(f_{z}^{+}\right)_{z}^{+}(x) \tag{1.7}
\end{equation*}
$$

Example:

Let $f(x)=-e^{-x^{2}}=-\exp \left(-x^{2}\right)$, for $\mathrm{x} \in \mathrm{E}^{1}$ (see Figure 7a). Note that f is quasi-convex. Then

$$
\begin{aligned}
f_{z}^{+}(u) & =z-\inf \{f(x): u x \geq z\} \\
& =z-\inf \left\{-\exp \left(-x^{2}\right): u x \geq z\right\} \\
& =\left\{\begin{array}{l}
z+\exp \left(-z^{2} / u^{2}\right) \text { if } z>0 \text { and } u \neq 0 \\
-\infty \text { if } \mathrm{z}>0 \text { and } u=0 \\
z+1 \text { if } \mathrm{z} \leq 0
\end{array}\right.
\end{aligned}
$$

The second z-quasi-conjugate is

$$
\begin{aligned}
\left(f_{z}^{+}\right)_{z}^{+} & =z-\inf \left\{f_{z}^{+}(u): u x \geq z\right\} \\
& =\left\{\begin{array}{l}
z-(z+1) \text { if } \mathrm{z} \leq 0 \\
z-\infty \text { if } z>0 \& x=0 \\
z-\inf \left\{z+\exp \left(-z^{2} / u^{2}\right): z / u \leq 0\right\} \text { if } z>0 \& x<0 \\
z-\inf \left\{z+\exp \left(-z^{2} / u^{2}\right): z / u \geq x\right\} \text { if } z>0 \& x<0
\end{array}\right. \\
& =\left\{\begin{array}{l}
-1 \text { if } z \leq 0 \\
-\infty \text { if } z>0 \& x=0 \\
-\exp \left(-x^{2}\right) \text { if } x>0 \& x \neq 0
\end{array}\right.
\end{aligned}
$$

And hence

$$
\begin{aligned}
f^{++}(x) & =\sup \left(f_{z}^{+}\right)_{z}^{+}(x) \\
& =\left\{\begin{array}{l}
\operatorname{Max}\{-1,-\infty\} \text { if } x=0 \\
\operatorname{Max}\left\{-1,-\exp \left(-x^{2}\right)\right\} \text { if } x \neq 0
\end{array}\right. \\
& =-\exp \left(-x^{2}\right) \\
& =f(x)
\end{aligned}
$$

(See Figure 7b.)
The function f^{++}has several important properties:
Property (i): (see [2]): f^{++}is quasi-convex, and

$$
f(x) \geq f^{++}(x) \geq f^{\vee \vee}(x)
$$

where $f^{\vee \vee}$ is the second (convex) conjugate. That is, f^{++}provides a quasiconvex approximation to f, from below, which is better than the convex approximation provided by $f^{\vee \vee}$.

Property (ii) (see [2]):

$$
\begin{align*}
f^{++}(x) & =\sup _{u} \inf _{w}\{f(w):(u, w) \geq(u, x)\} \tag{1.8}\\
& =\sup _{u} \inf _{w}\left\{f(w): w \in \mathrm{H}_{u}{ }_{u}^{u x}\right\}
\end{align*}
$$

This relaxation is easier to interpret geometrically than the definition of f^{++}. In Figure 8, we see depicted the three hyperplanes through x with the direction vectors u^{2}, u^{1}, and u^{0}, together with the points

$$
\widehat{w}^{i}=\underset{w}{\operatorname{argmin}}\left\{f(w): w \in H_{u^{i}}^{u^{i} x}\right\}
$$

It is clear that for the function depicted, rotating a hyperplane clockwise from $H_{u^{2}}^{u^{2} x}$ through $H_{u^{1}}^{u^{1} x}$ to $H_{u^{0}}^{u^{0} x}$ (which supports the contour curve through x of the function f) produces a maximizing sequence $\left\{\hat{w}^{i}\right\}$ converging to x , and $f^{++}(x)=f(x)$.

Figure 9 depicts a function which (unlike that in Figure 8) is not quasi-convex. Again, rotating a hyperplane clockwise from $H_{u^{2}}^{u^{2} x}$ to $H_{u^{0}}^{u^{0} x}$ produces a maximizing sequence $\left\{\hat{w}^{i}\right\}$, which does not, however, converge to x. Moreover,

$$
f\left(w^{* 0}\right)=f\left(w^{0}\right)=f^{++}(x)<f(x) .
$$

Furthermore, it is shown in [2] that if f is an isotonic function, i.e.,

$$
w \geq v \Rightarrow f(w) \geq f(v)
$$

the optimal u in equation (1.8) has the property $u \in E_{+}^{n}$, i.e., $\mathrm{u} \geq 0$. Hence, if f is isotonic,

$$
\begin{equation*}
f^{++}(x)=\operatorname{supinf}_{u \geq c}\{f(w): u w \geq u x\} \tag{1.9}
\end{equation*}
$$

Property (iii): If $L_{c} f$ is compact for all c , then

$$
L_{c} f^{++}=\operatorname{conv} L_{c} f
$$

for all c (cf. [3].) More generally, for all c,

$$
L_{c}^{o} f^{++} \subset \mathrm{cl} \text { conv } L_{c} f
$$

and

$$
\begin{equation*}
L_{c} f^{++} \supset \operatorname{conv} L_{c} f \tag{1.10}
\end{equation*}
$$

Proof: The proof of (1.10) is a trivial result of property (i). Let $x \notin \mathrm{cl}$ conv $L_{c} f$. Then x may be separated from cl conv $L_{c} f$, i.e., there is a y such that $x y>w y$ for all $w \in \mathrm{cl}$ conv $L_{c} f$. By Property (ii),

$$
f^{++}(x)=\operatorname{supinf}_{u}\{f(w): w u \geq x u\}
$$

and so, in particular,

$$
f^{++}(x) \geq \mathrm{K}
$$

where

$$
K=\inf _{w}\{f(w): w y \geq x y\} .
$$

Now, given $\delta>0$, there must exist w_{δ} such that $w_{\delta} y \geq x y$ and $f\left(w_{\delta}\right)<K+\delta$. But $w_{\delta} y \geq x y$ implies that $w_{\delta} \notin \operatorname{conv} L_{c} f$ and hence $w_{\delta} \notin L_{c} f$, i.e., $f\left(w_{\delta}\right)>c$. Therefore, we have, for all $\delta>0$,

$$
c<f\left(w_{\delta}\right)<K+\delta \leq f^{++}(x)+\delta
$$

or simply $c-\delta<f^{++}(x)$ for all $\delta>0$. Therefore, $c \leq f^{++}(x)$ and so $x \notin L_{c}^{o} f^{++}$, proving that

$$
L_{c}^{o} f^{++} \subset \mathrm{cl} \text { conv } L_{c} f .
$$

We are now in a position to introduce the concept of surrogate mathematical programming.

SURROGATE MATHEMATICAL PROGRAMMING

Consider the family of mathematical programs obtained by parameterizing the constraint right-hand-side vector and whose optimal value $\mathrm{F}: \mathrm{E}^{\mathrm{m}}$ is defined by

$$
\begin{equation*}
F(b)=\inf \{f(x): g(x) \geq b, x \in S\} \tag{2.1}
\end{equation*}
$$

where $f: S \rightarrow E^{1}, S \subset E^{n}, g: S \rightarrow E^{m}$, and $b \in E^{m}$. (If the problem is infeasible, then we define $F(b)=+\infty$.)

Note that if $b^{1} \geq b^{2}$, then

$$
\left\{x: g(x) \geq b^{1}, x \in S\right\} \subset\left\{x: g(x) \geq b^{2}, x \in S\right\},
$$

and so

$$
\inf \left\{x: g(x) \geq b^{1}, x \in S\right\} \geq \inf \left\{x: g(x) \geq b^{2}, x \in S\right\},
$$

i.e., $F\left(b^{1}\right) \geq F\left(b^{2}\right)$. Thus F is isotonic.

A surrogate problem, parameterized by b and the surrogate multiplier vector $u \in E_{+}^{m}$, is defined to be that of computing

$$
\begin{equation*}
S(u, b)=\inf \{f(x): u g(x) \geq u b, x \in S\} . \tag{2.2}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
S(u, b)=\inf \{F(\beta): u \beta \geq u b, x \in S\} . \tag{2.3}
\end{equation*}
$$

We further define the surrogate dual problem to be that of computing

$$
\begin{align*}
\hat{S}(b) & =\sup _{u \geq 0} S(b, u) \\
& =\operatorname{supinf}_{u \geq 0}\{f(x): u g(x) \geq u b, x \in S\} \tag{2.4}\\
& =\operatorname{supinf}_{u \geq 0}\{F(\beta): u \beta \geq u b\} .
\end{align*}
$$

Without affecting the supremum we may perform the outer optimization over the subset of surrogate multipliers

$$
U=\left\{u \in E_{+}^{m}: \sum_{i=1}^{m} u_{i}=1\right\}
$$

which is both convex and compact. Any direction in E_{+}^{m} has a representative vector in U . We may then write

$$
\hat{S}(b)=\sup _{u \in U} S(b, u) .
$$

Comparison of (2.4) with equation (1.9) shows that, since F is isotonic,

$$
\begin{equation*}
\hat{S}(b)=F^{++}(b) . \tag{2.5}
\end{equation*}
$$

We know that $F^{++}(b) \leq F(b)$, and we are naturally interested in knowing under what conditions equality holds. That is, when does there exist a $u \geq 0$ such that solving the surrogate problem $S(b, u)$ solves our original problem, and $S(u, b)=F(b)$? If such a u does not exist, b is said to lie in a surrogate gap. The point b^{0} is in such a gap in Figure 11, where

$$
F^{++}(b)=F\left(b^{1}\right)<F\left(b^{0}\right)
$$

This figure also illustrates one of the results stated in [2]. Suppose, for some $u^{*} \geq 0, b^{0}$ is a convex combination of points in the set $\operatorname{argmin}\left\{F(\beta): u \beta \geq u b^{0}\right\}$. Then either some solution x of the surrogate problem $S\left(b^{0}, u^{*}\right)$ is a solution of $F\left(b^{0}\right)$, or else b^{0} is in a surrogate gap.

The quasi-subgradient, to be introduced next, will help to characterize the surrogate gaps of a mathematical program.

QUASI-SUBGRADIENTS

The conjugate inequality [4], namely,

$$
(x, y) \leq f(x)+f^{\vee}(y)
$$

with equality if and only if $y \in \partial f(x)$, where $\partial f(x)$ is the subgradient set of f at the point x , and f^{\vee} is the convex conjugate of the function f has an analogue in quasiconjugate theory. It is easy to derive the result

$$
\begin{equation*}
(u, x) \leq f(x)+f_{u x}^{+}(u) \tag{3.1}
\end{equation*}
$$

and we shall define $\partial^{+} f(x)$, the set of quasi-subgradients of f at x , to be those vectors u such that equality holds in (3.1), i.e.,

$$
(u, x) \leq f(x)+f_{u x}^{+}(u),
$$

with equality if and only if $u \in \partial^{+} f(x)$.
Equivalently,

$$
\begin{aligned}
\partial^{+} f(x) & =\{u:(u, w) \geq(u, x) \Rightarrow f(w) \geq f(x)\} \\
& =\left\{u: w \in \mathrm{H}_{u}^{u x} \Rightarrow f(w) \geq f(x)\right\} \\
& =\left\{u: f(w)<f(x) \Rightarrow w \notin \mathrm{H}_{u}^{u x}\right\} \\
& =\left\{u: L_{f(x)}^{o} f \cap{H_{u}^{u x}}_{u}=\Phi\right\} .
\end{aligned}
$$

That is, u is a quasi-subgradient of f at x if $L_{f(x)}^{o} f$ lies entirely on one side of the hyperplane through x with direction vector u, or equivalently, $H_{u}^{u x}$ is a non-intersecting barrier of $L_{f(x)}^{o} f .\left(H_{u}^{z}\right.$ is a barrier for a set S if

$$
\left.\sup _{x \in S}(u, x) \leq z .\right)
$$

In many cases (e.g., as we shall see, when f is continuous and convex or explicitly quasi-convex), there is a one-to-one correspondence between quasi-subgradients and level set supports (see Figure 12). (This assumes, of course, that the vectors in $\partial^{+} f(x)$ are normalized in some manner, since any multiple of a quasi-subgradient is also a quasisubgradient.) However, Figure 13 depicts quasi-subgradients which do not produce
corresponding level set supports. Any u which is a convex combination of u^{0} and u^{1} is a quasi-subgradient in Figure 13.

To see that level set supports, conversely, do not necessarily correspond to quasisubgradients, consider the function $f: E^{2}$ defined by

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
0 \text { if } x_{1}+x_{2}<1, \text { or } x_{1}+x_{2}=1 \& x_{1} \geq 0.5 \\
x_{1}+x_{2} \text { otherwise }\left(x_{1} \geq 0 \& x_{1} \geq 0\right)
\end{array}\right.
$$

whose graph and level sets are illustrated in Figure $14 \mathrm{~J} \& B$. The set $L_{1} f$ is supported at the point $\mathrm{x}=(0.5,0.5)$ by the hyperplane $x_{1}+x_{2}=1$ (i.e., $\left.H_{(1,1)}^{1}\right)$ but unfortunately $L_{1}^{o} f$ has a nonempty intersection with this hyperplane, and so $\mathrm{u}=(1,1)$ is not a quasi-subgradient of f at $\mathrm{x}=(0.5,0.5)$.

The correspondence between level set supports and quasi-subgradients failed for the function in Figure 13 because $\operatorname{cl} L_{f(x)}^{o} f \neq L_{f(x)} f$, while the failure for the function in Figure 14 results from the fact that $L_{f(x)}^{o} f$ contained boundary points. In general, if

$$
\operatorname{cl} L_{f(x)}^{o} f=I_{f(x)} f
$$

then

$$
u \in \partial^{+} f(x) \Rightarrow H_{u}^{u x}
$$

supports $L_{f(x)} f$ at x. Conversely, if $L_{f(x)}^{o} f$ is open, then

$$
H_{u}^{u x} \text { is a barrier (or support) for } L_{f(x)} f \text { at } \mathrm{x} \Rightarrow u \in \partial^{+} f(x) .
$$

The importance of the quasi-subgradient derives mainly from the following properties:
(i) $\quad 0 \in \partial^{+} f(x) \Leftrightarrow x \in \operatorname{argmin} f(x)$
(ii) $\partial^{+} f(x) \neq \Phi \Rightarrow f(x)=f^{++}(x)$

Thus our question "does b^{0} lie in a surrogate gap?" is equivalent to the question "does F have a quasi-subgradient at b^{0} ?". Toward answering this question, we may use the following sufficient conditions, the proofs of which are very straightforward. (Note that any support is a barrier, but not conversely.)
(i) If $L_{f(x)}^{o} f$ is a non-empty open set, and if $H_{u}^{u x}$ is a barrier for $L_{f(x)}^{o} f$, then $u \in \partial^{+} f(x)$.
(ii) If $L_{f(x)}^{o} f$ is non-empty and f is upper semi-continuous on some set containing $L_{f(x)}^{o} f$, and if $H_{u}^{u x}$ is a barrier for $L_{f(x)}^{o} f$, then $u \in \partial^{+} f(x)$.
(iii) If $L_{f(x)}^{o} f$ is non-empty and f is upper semi-continuous on some set containing $L_{f(x)}^{o} f$, and if $H_{u}^{u x}$ supports $L_{f(x)} f$, then $u \in \partial^{+} f(x)$.
(iv) If f is quasi-convex and $x \notin \operatorname{cl} L_{f(x)}^{o} f$, then $\partial^{+} f(x)$ is non-empty.
(v) If f is a quasi-convex function which is upper semi-continuous on $L_{f(x)} f$ for some x , then $\partial^{+} f(x)$ is non-empty.

EXAMPLES

The following examples will help to illustrate the concepts which have been presented.

Example 1. Consider the problem

$$
\text { Minimize } f(x)=x_{1}^{2}+x_{2}^{2}
$$

subject to

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1=b_{1}^{0} \\
& x_{1}-x_{2} \geq 1=b_{2}^{0}
\end{aligned}
$$

Our optimal response function, $F(b)$, is

$$
\begin{aligned}
F\left(b_{1}, b_{2}\right) & =\min \left\{x_{1}^{2}+x_{2}^{2}: x_{1}+x_{2} \geq b_{1}, x_{1}-x_{2} \geq b_{2}\right\} \\
& =\left\{\begin{array}{l}
0.5\left(b_{1}^{2}+b_{2}^{2}\right) \text { if } b_{1} \geq 0, b_{2} \geq 0 \\
0.5 b_{1}^{2} \quad \text { if } b_{1}>0, b_{2}<0 \\
0.5 b_{2}^{2} \text { if } b_{1}<0, b_{2}>0 \\
0 \text { if } b_{1}<0, b_{2}<0
\end{array}\right.
\end{aligned}
$$

as can be seen graphically (see Figure 15a). Its contours are depicted in Figure 15b.
The surrogate program corresponding to any $u \in U$, where

$$
U=\left\{\left(u_{1}, u_{2}\right): u_{1}+u_{2}=1, u_{1} \geq 0, u_{2} \geq 0\right\}
$$

is

$$
\begin{aligned}
S\left(b^{0}, u\right) & =\inf \left\{x_{1}^{2}+x_{2}^{2}: u_{1}\left(x_{1}+x_{2}\right)+u_{2}\left(x_{1}-x_{2}\right) \geq 1\right\} \\
& =\inf \left\{x_{1}^{2}+x_{2}^{2}: x_{1}\left(u_{1}+u_{2}\right)+x_{2}\left(u_{1}-u_{2}\right) \geq 1\right\} \\
& =\inf \left\{x_{1}^{2}+x_{2}^{2}: x_{1}+x_{2}\left(2 u_{1}-1\right) \geq 1\right\}
\end{aligned}
$$

which has the solution (see Figure 15c):

$$
S\left(b^{0}, u\right)=1 /\left[1+\left(2 u_{1}-1\right)^{2}\right] \quad \text { for } 0 \leq u_{1} \leq 1, u_{2}=1-u_{1}
$$

The surrogate dual is therefore

$$
\begin{aligned}
\hat{S}\left(b^{0}\right) & =\sup _{u \in U} S\left(b^{0}, u\right) \\
& =S\left(b^{0}, u^{0}\right), \text { where } u^{0}=(0.5,0.5) \\
& =1 .
\end{aligned}
$$

Thus $\mathrm{b}^{0}=(1,1)$ is not in a surrogate gap, since

$$
\hat{S}\left(b^{0}\right)=F\left(b^{0}\right)=1
$$

and it is evident from Figure 15 that F has no surrogate gaps whatsoever.

Our next example illustrates the existence of surrogate gaps.

Example 2.

Consider the problem

$$
\text { Minimize } x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1}+2 x_{2} \geq 4=b_{1}^{0} \\
& 2 x_{1}+x_{2} \geq 3=b_{2}^{0} \\
& x_{1} \text { and } x_{2} \text { both nonnegative and integer }
\end{aligned}
$$

The graph of our optimal response function, F, is sketched in Figure 16a and its contours are shown in Figure 16b. Note that $F(b)$ is both isotonic and lower semicontinuous everywhere, but clearly is not quasi-convex.

The surrogate problem with parameter $u \in U$, where (as before),

$$
U=\left\{\left(u_{1}, u_{2}\right): u_{1}+u_{2}=1, u_{1} \geq 0, u_{2} \geq 0\right\}
$$

is

$$
\begin{aligned}
S\left(b^{0}, u\right) & =\underset{x_{\mathrm{i}} \in\{0,1,2, \ldots\}}{\operatorname{minimum}}\left\{x_{1}+x_{2}: u_{1}\left(x_{1}+2 x_{2}\right)+u_{2}\left(2 x_{1}+x_{2}\right) \geq 4 u_{1}+3 u_{2}\right\} \\
& =\underset{x_{\mathrm{x}} \in\{0,1,2, \ldots\}}{\operatorname{minimum}}\left\{\mathrm{x}_{1}+x_{2}: x_{1}\left(1+u_{1}\right)+x_{2}\left(1+u_{2}\right) \geq 3+u_{1}\right\}
\end{aligned}
$$

which has the solution

$$
S\left(b^{0}, u\right)=\left\{\begin{array}{l}
{\left[\left(3+u_{1}\right) /\left(1+u_{1}\right)\right]=1+\left[2 /\left(1+u_{1}\right)\right] \text { if } u_{1} \geq u_{2} \text {, i.e., } 0.5 \leq u_{1} \leq 1} \\
{\left[\left(3+u_{1}\right) /\left(1+u_{2}\right)\right]=\left[5 /\left(2-u_{1}\right)\right]-1 \text { if } u_{1}<u_{2} \text {, i.e., } 0 \leq u_{1}<0.5}
\end{array}\right.
$$

where $\lceil z\rceil$ denotes the smallest integer greater than or equal to z . (That this is the solution may be seen in Figure 16c: the minimum will always be attained at a point on a coordinate axis.) This solution is graphed as a function of u in Figure 16d.

The surrogate dual is $\widehat{S}\left(b^{0}\right)=\sup _{u \in \cup} S\left(b^{0}, u\right)$ and its solution, obtained from Figure 16 d , is $\widehat{S}\left(b^{0}\right)=3$, and

$$
\underset{u}{\operatorname{argmin}} S\left(b^{0}, u\right)=\left\{u \in \mathrm{U}: 1 / 3 \leq u_{1} \leq 1\right\}
$$

We see, therefore, that $b^{0}=(4,3)$ is not in a surrogate gap, since from Figure $16 b$,

$$
F(4,3)=3 .
$$

It follows then that any optimal multiplier u is a quasi-subgradient, so

$$
\partial^{+} F(4,3)=\left\{u: 1 / 3 \leq u_{1} \leq 1, u_{2}=1-u_{1}\right\} .
$$

An examination of Figure 16e confirms this; any direction between $u^{1}=(1 / 3,2 / 3)$ and $u^{2}=(1,0)$ is a barrier of $L_{3}^{o} F=L_{2} F$. (It was demonstrated in [2] that $\mathrm{b} 0=(4,3)$ is in a GLM (generalized Lagrangian multiplier) duality gap. This is evident from Figure 16a: the epigraph of $F(b)$ has supports only at the points indicated in Figure 16f, and all other points must be in a GLM duality gap.)

We might now ask, "does our F have any surrogate gaps?". Further inspection indicates that the areas indicated in Figure 16g, for example, are surrogate gap regions. That is, the triangular area

$$
\left\{\left(b_{1}, b_{2}\right): b_{1}>3, b_{2}<2, b_{1}+b_{2} \leq 6\right\}
$$

is a surrogate gap region. For any point b in these regions, we cannot construct a hyperplane which acts as a non-intersecting barrier of $L_{f(x)}^{o} F$.

An important relationship is illustrated here, namely, that surrogate gaps form a subset of the GLM duality gaps, i.e., if b^{0} is in a surrogate gap, so that no surrogate multiplier vector $\mathfrak{Z} 0$ can be found such that $S\left(b^{0}, u\right)=F\left(b^{0}\right)$, then it is also true that no GLM multiplier vector $\mathfrak{l} \geq 0$ may be found such that

$$
\underset{x}{\operatorname{minimum}}\left\{f(x)+u\left[b^{0}-g(x)\right]\right\}=F\left(b^{0}\right) .
$$

Summary

We have seen that quasi-conjugacy and the quasi-subgradient provide a basis for interpreting surrogate duality, much as conjugacy and the subgradient provide a basis for understanding Lagrangian duality.

While the Lagrangian dual has gaps when F is not convex, i.e.,

$$
F^{\vee \vee}(b)<F(b),
$$

the surrogate dual has a reduced gap region, as a consequence of the property

$$
F^{\vee \vee}(b) \leq F^{++}(b) \leq F(b) .
$$

That is, F^{++}provides a better approximation to F than does $F^{\vee \vee}$.
A much more complete discussion of the relationship between the surrogate and Lagrangian dual may be found in [2]. Other important properties of the quasi-conjugates and quasi-subgradients are reported in [3].

REFERENCES

Glover, F. (1975). "Surrogate Constraint Duality in Mathematical Programming." Operations Research 23: 433-451.

Greenberg, H. J. and W. P. Pierskalla (1970). "Surrogate Mathematical Programming." Operations Research 18: 924-939.

Greenberg, H. J. and W. P. Pierskalla (1973). "Quasi-Conjugate Functions and Surrogate Duality." Cahier Centre d'Etude de Recherche Operationelle 15: 437-448.

Rockafellar, R. T. (1970). Convex Analysis. Princeton, Princeton University Press.

Figure 1. A hyperplane with direction vector u through x^{0}.

Figure 2. The c-level set of the function f .

Figure 3. An example illustrating $L_{c} f \neq \mathrm{cl} L_{c}^{o} f$.

Figure 4. A c-level set of a function defined on E^{2}.

Figure 5. The level set $L_{f(x)} f$ corresponding to a point x .

Figure 6. The hyperplane H_{u}^{z} corresponding to $f_{z}^{+}(u)$.

Figure 7a. The function $f(x)=-\exp \left(-x^{2}\right)$

Figure 7b. Graphs of selected z-quasi-conjugates of $f(x)=-\exp \left(-x^{2}\right)$

Figure 8. Geometric interpretation of f^{++}(where f is quasi-convex)

Figure 9. Geometric interpretation of f^{++}(where f is not quasi-convex).

Figure 10. Level curves of an isotonic function

Figure 11. Illustration of a surrogate gap (at b^{0}).

Figure 12. The hyperplane $H_{u}^{u x}$ corresponding to quasi-subgradient u of the function f is a support of the level set $L_{f(x)} f$ (where f is explicitly quasi-convex).

Figure 13. The quasi-subgradient set of f is the convex hull of u^{0} and u^{1}, which do not correspond to supports of the level set $L_{f(x)} f$.

Figure 14. The graph (a) and the 1-level set (b) of an example function f

Figure 15. Example 1: (a) graphical solution; (b) contours of optimal response function F; (c) graphical solution of surrogate problem.

Figure 16. Example 2: (a) graph of optimal response function F; (b) contours of optimal response function F

Figure 16 (continued). Example 2: (c) graphical solution of surrogate problem; (d) graphical solution of surrogate dual problem; (e) the quasi-subgradient set of F at b^{0}

(f)

(g)

Figure 16 (continued). Example 2: (f) Lagrangian duality gap region; (g) surrogate duality gap regions

