56:271 Nonlinear Programming
 Quiz \#8-- Fall 2003

Indicate true (+) or false (o):

___ 1. A posynomial function is always positive.
2. The dual of a posynomial GP problem has one orthogonality equation for each primal variable.
3. A polynomial function is always a posynomial, but a posynomial function is not always a polynomial.
\qquad 4. It is possible that the information provided by the optimal solution of the dual of a posynomial GP problem is not sufficient to compute the primal solution, in which case another ("subsidiary") problem must be solved to obtain additional information.
\qquad 5. If the posynomial GP dual problem is infeasible, then the primal GP problem's objective function is unbounded below.
\qquad 6. The dual of an unconstrained posynomial GP problem has only linear equality plus nonnegativity constraints.
7. A signomial function is always positive.
\qquad 8. The dual of a posynomial GP problem is always feasible.
9. If a primal GP constraint is slack, then all the weights δ_{t} of the terms in that constraint must be zero.
\qquad 10. If all posynomials in a (posynomial) GP problem are condensed into single terms, then it is always possible to rewrite the resulting problem as an LP problem.
\qquad 11. If a posynomial function is "condensed" into a monomial, the monomial function (if not equal) is an overestimate of the posynomial function.
\qquad 12. If all posynomials in a (posynomial) GP problem are condensed into single terms, then the resulting problem has a feasible region which includes the original feasible region.
13. Which of the functions below are convex? circle:
14. Which of the functions below are concave? circle:
15. Which of the functions below are separable? circle:

a	b	c	d	e	f	g
a	b	c	d	e	f	g
a	b	c	d	e	f	g

a. $v(\delta, \lambda)=\prod_{t=1}^{T}\left(\frac{c_{t}}{\delta_{t}}\right)^{\delta_{t}} \prod_{k=1}^{K} \lambda_{k}^{\lambda_{k}}$
b. $\ln v(\delta, \lambda)=\sum_{t=}^{T}\left(\delta_{t} \ln c_{t}-\delta_{t} \ln \delta_{t}\right)+\sum \lambda_{k} \ln \lambda_{k}$
c. $v(\delta, \lambda)=\prod_{t=1}^{T}\left(\frac{c_{t}}{\delta_{t}}\right)^{\delta_{t}} \prod_{k=1}^{K}\left(\sum_{t \in[k]} \delta_{t}\right)^{\sum_{t \in[k]} \delta_{t}}$
d. $\ln v(\delta, \lambda)=\sum_{t=}^{T}\left(\delta_{t} \ln c_{t}-\delta_{t} \ln \delta_{t}\right)+\sum\left(\sum_{t \in[k]} \delta_{t}\right) \ln \left(\sum_{t \in[k]} \delta_{t}\right)$
e. $\sum_{t \in[k]} c_{t} \prod_{i=1}^{n} x_{i}^{a_{i j}}$
f. $\sum_{t \in[k]} c_{t} e^{z_{t}}$
g. $\sum_{t} \delta_{t} \ln \delta_{t}$

