1. Two products X and Y can be assembled from two components A & B with availabilities $b_A \& b_B$, respectively. The product mix LP model is

$$\max 250x + 185y$$

s.t. $2x + 3y \ge b_A$
 $x + 2y \ge b_B$
 $x, y \ge 0$

For example, one unit of X requires 2 units of component A and one of component B. However, the availabilities $b_A \& b_B$ are random with cumulative distribution functions $F_A \& F_B$, respectively. For example, $F_A(t) = P\{b_A \le t\}$.

What (nonlinear) constraint would you use so as to be 80% confident that the solution (x,y) will be feasible, i.e., so that sufficient components are available to assemble the specified X and Y?

2. Consider again the GP model for designing the concentric cylinders:

$$Min \ 4\pi r_1^2 h + 2\pi r_2 h + 2\pi r_2^2$$

s.t. $1000r_2^{-2}h^{-1} + r_1^2r_2^{-2} \le 1$
 $50r_1^{-1}h^{-1} \le 1$
 $r_1, r_2, h > 0$

where $r_1 \& r_2$ are the radii of the outer & inner cylinders, respectively, and h their height. This can be reformulated as a *separable convex* minimization problem

$$\begin{array}{rcl} Min & 4\pi e^{z_1} + 2\pi e^{z_2} + 2\pi e^{z_3} \\ s.t. & 1000e^{z_4} + e^{z_5} \leq 1 \\ & 50e^{z_6} \leq 1 \end{array}$$

$$\begin{cases} z_1 = \underline{u_1} + \underline{u_2} + \underline{u_3} \\ z_2 = \underline{u_1} + \underline{u_2} + \underline{u_3} \\ z_3 = \underline{u_1} + \underline{u_2} + \underline{u_3} \\ z^4 = \underline{u_1} + \underline{u_2} + \underline{u_3} \\ z^5 = \underline{u_1} + \underline{u_2} + \underline{u_3} \\ z^6 = \underline{u_1} + \underline{u_2} + \underline{u_3} \end{cases}$$

a. Complete the coefficients of the equations above.

b. What sign restrictions, if any, should be placed on z_i ?

- c. What sign restrictions, if any, should be placed on u_i ?
- d. What is the relationship between

 u_l and r_l ?