page

Name_____

56:271 Nonlinear Programming Midterm Exam -- October 21, 1988

- 1. (26 points) Indicate whether each statement is true or false . If false , explain why (or give a counter-example).
 - a. The Kuhn-Tucker conditions are necessary conditions for optimality.
 b. The steepest descent algorithm requires the calculation of partial
 - derivatives.
 - _____c. "GRG" means "Gradient Restriction Generation"
 - _____d. A linear function is neither convex nor concave.
 - $\underline{}$ e. ²f is the Hessian matrix of the function f.
 - _____ f. The Jacobian matrix of the equation f(x) = 0 is called the Hessian matrix.
 - _____g. The "independent" variables of the GRG algorithm are essentially the same as the "basic" variables of the simplex LP algorithm.
 - ____ h. A twice-differentiable function is convex if and only if its Hessian matrix is nonnegative everywhere.
 - _____i. The function e^{ax} is convex for all values of a.
 - _____j. All quadratic functions are convex.
 - _____k. The function f(x,y) = xy is a concave function of x and y.
 - I. A positive definite matrix always has all positive elements, although a matrix whose elements are positive need not be positive definite.
 - _____m. The Lagrangian dual of a convex quadratic programming problem is a quadratic programming problem.
 - _____n. Powell's algorithm does not require the computation of partial derivatives.
 - _____ o. The product of two convex functions is convex.
 - _____ p. In the "Golden Section Search" method, one-third of the interval of uncertainty is eliminated at a typical iteration.
 - _____ q. A function which is not convex is called <u>concave</u>.
 - r. "Quasi-Newton" search methods for unconstrained minimization require the computation of <u>second</u> partial derivatives.
 - _____s. The sum of two convex functions is convex.
 - _____t. The GRG algorithm requires that dependent variables <u>not</u> be at either their lower or upper bounds.
 - _____ u. If the current x lies on the boundary of the feasible region, the gradient projection method computes a search direction by projecting the steepest descent method onto the boundary.
 - _____v. The gradient projection method computes Lagrange multipliers at each iteration, and stops when they have the appropriate sign.
 - _____w. The Fletcher-Powell method is also known as the "Conjugate Gradient" method.
 - _____ x. The Fletcher-Reeves method is also known as a "Quasi-Newton" method.
 - _____ y. If f(x) is quadratic, the minimum of f(x) may be found by performing one-dimensional searches in each of 2 conjugate directions.

_____ z. Any two orthogonal directions are conjugate with respect to the identity matrix.

2. (20 points) Consider the problem

Minimize $f(x) = (x_1 - x_2)^2 + x_2$ subject to $x_1 + x_2 = 1$ $x_1 - 2x_2 = 3$ $x_1 = 0, x_2 = 0$

(a.) Write down Kuhn-Tucker conditions for the optimal solution of this problem. How many complementary slackness conditions are there?

(b.) Are the Kuhn-Tucker conditions satisfied at the point $x^{0}=(3,0)$?

(c.) Illustrate your answer in (b) by sketching the feasible region, the gradients of the tight constraints at x^{0} , and the steepest descent direction. Explain the relationship between your sketch and the K-T conditions.

(d.) Compute the Hessian matrix of the objective, and test whether it is positive semidefinite.

(e.) Are the Kuhn-Tucker conditions necessarily satisfied by any optimal solution of this problem?

(f.) Discuss a "constraint qualification" for this problem. Is it satisfied? What is the importance of a "constraint qualification"?

(g.) Is any point which satisfies the Kuhn-Tucker conditions which you have written necessarily optimal?

(h.) Explain (briefly) how complementary pivoting may be used to find a solution of the Kuhn-Tucker conditions.

(i.) Suppose that you were to solve the above problem using the Feasible Direction Algorithm, starting at x^{0} given above. Let d^{0} represent the search direction. What inequality or inequalities must be satisfied by d^{0} if it is to be feasible ? if it is to be a direction of improvement ? Write down an LP which will find (if one exists) a feasible direction of improvement.

3. (9 points) Consider the function $f(x) = x \log x$

- a. Is f a convex function? a concave function?
- b. Suppose that I wish to find x such that f(x)=1. Describe an iterative procedure to do this, and illustrate one step, starting at $x^0 = 1$.
- c. Suppose that I wish to find x (>0) minimizing the function f. Describe an iterative procedure to do this, and illustrate one step, starting at $x^0 = 1$.