\qquad

56:271 Nonlinear Programming Midterm Exam -- October 21, 1988

1. (26 points) Indicate whether each statement is true or false . If false , explain why (or give a counter-example).
___ a. The Kuhn-Tucker conditions are necessary conditions for optimality.
b. The steepest descent algorithm requires the calculation of partial derivatives.
c. "GRG" means "Gradient Restriction Generation"
d. A linear function is neither convex nor concave.
___ e. $\nabla^{2} f$ is the Hessian matrix of the function f.
___ f. The J acobian matrix of the equation $\nabla f(x)=0$ is called the Hessian matrix.
g. The "independent" variables of the GRG algorithm are essentially the same as the "basic" variables of the simplex LP algorithm.
h. A twice-differentiable function is convex if and only if its Hessian matrix is nonnegative everywhere.
i. The function e^{ax} is convex for all values of a.
___ j. All quadratic functions are convex.
- k. The function $f(x, y)=x y$ is a concave function of x and y.
l. A positive definite matrix always has all positive elements, although a matrix whose elements are positive need not be positive definite.
m . The Lagrangian dual of a convex quadratic programming problem is a quadratic programming problem.
n. Powell's algorithm does not require the computation of partial derivatives.
o. The product of two convex functions is convex.
p. In the "Golden Section Search" method, one-third of the interval of uncertainty is eliminated at a typical iteration.
q. A function which is not convex is called concave.
__r. "Quasi-Newton" search methods for unconstrained minimization require the computation of second partial derivatives.
s. The sum of two convex functions is convex.
--- t. The GRG algorithm requires that dependent variables not be at either their lower or upper bounds.
u. If the current x lies on the boundary of the feasible region, the gradient projection method computes a search direction by projecting the steepest descent method onto the boundary.
v. The gradient projection method computes Lagrange multipliers at each iteration, and stops when they have the appropriate sign.
w. The Fletcher-Powell method is also known as the "Conjugate Gradient" method.
x . The Fletcher-Reeves method is also known as a "Quasi-Newton" method.
y. If $f(x)$ is quadratic, the minimum of $f(x)$ may be found by performing
one-dimensional searches in each of 2 conjugate directions.
___ z. Any two orthogonal directions are conjugate with respect to the identity matrix.

2. (20 points) Consider the problem

$$
\begin{aligned}
& \text { Minimize } f(x)=\left(x_{1}-x_{2}\right)^{2}+x_{2} \\
& \text { subject to } \quad \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& x_{1}-2 x_{2} \geq 0, x_{2} \geq 3 \\
&
\end{aligned}
$$

(a.) Write down Kuhn-Tucker conditions for the optimal solution of this problem. How many complementary slackness conditions are there?
(b.) Are the Kuhn-Tucker conditions satisfied at the point $x^{0}=(3,0)$?
(c.) Illustrate your answer in (b) by sketching the feasible region, the gradients of the tight constraints at x^{0}, and the steepest descent direction. Explain the relationship between your sketch and the K-T conditions.
(d.) Compute the Hessian matrix of the objective, and test whether it is positive semidefinite.
(e.) Are the Kuhn-Tucker conditions necessarily satisfied by any optimal solution of this problem?
(f.) Discuss a "constraint qualification" for this problem. Is it satisfied? What is the importance of a "constraint qualification"?
(g.) Is any point which satisfies the Kuhn-Tucker conditions which you have written necessarily optimal?
(h.) Explain (briefly) how complementary pivoting may be used to find a solution of the Kuhn-Tucker conditions.
(i.) Suppose that you were to solve the above problem using the Feasible Direction Algorithm, starting at x^{0} given above. Let d^{0} represent the search direction. What inequality or inequalities must be satisfied by d^{0} if it is to be feasible ? if it is to be a direction of improvement ? Write down an LP which will find (if one exists) a feasible direction of improvement.
3. (9 points) Consider the function $f(x)=x \log x$
a. Is f a convex function? a concave function?
b. Suppose that I wish to find x such that $\mathrm{f}(\mathrm{x})=1$. Describe an iterative procedure to do this, and illustrate one step, starting at $x^{0}=1$.
c. Suppose that I wish to find $x(>0)$ minimizing the function f. Describe an iterative procedure to do this, and illustrate one step, starting at $x^{0}=1$.

