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56:271 Nonlinear Programming

Final Exam (Take-home)  - Thursday, May 15, 1997
✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠

Indicate whether each statement is true  (+)  or  false  (o).  If  false, briefly state why or give a
counterexample.

_____ 1.  A barrier function adds a penalty to the objective when the solution approaches a
boundary of the feasible region.

_____ 2.  The number of "dependent" variables of the GRG algorithm is equal to the number of
equality constraints.

_____ 3.   The cubic interpolation procedure for one-dimensional minimization requires the
computation of second derivatives.

_____ 4.  The function xa is convex for x>0.

_____ 5.  The feasible directions algorithm computes a search direction by solving an LP.

_____ 6.   The Fibonacci method for one-dimensional minimization requires the computation of
derivatives.

_____ 7.   If all posynomials in a (posynomial) GP problem are condensed into single terms,
then it is always possible to rewrite the resulting problem as an LP problem.

_____ 8.  A linear function is neither convex nor concave.

_____ 9.  The Gradient Projection method always follows the boundary of the feasible region,
and never enters the interior.

_____ 10.  The logarithm of the dual GP objective v(δ,λ) above is a concave function of δ and

λ.

_____ 11.  The logarithm of the dual GP objective v(δ,λ) above is not a concave function of

both δ and λ, but becomes so if you eliminate λk using λk = δi∑
i ∈ k

.

_____ 12.  A locally optimal solution for a signomial geometric programming problem must be
globally optimal.

_____ 13.  The dual ("pseudo-dual") of a signomial GP problem may have multiple local
maxima, but its global maximum will have the same objective value as the global
minimum of the primal signomial GP.

_____ 14.  Penalty functions may be used for both equality and inequality constraints, but barrier
functions may be used only for inequality constraints.
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_____ 16.  If the Lagrangian function L(x,λ) has a saddlepoint (xo,λo), then there is zero duality
gap between primal and dual optimal solutions.

_____ 17.  Consider the problem:  min f(x) subject to gi(x)≤0, i=1,2...m, x≥0 (where gi satisfy
some constraint qualification) and its Lagrangian function

L(x,λ) = f(x) + λigi(x)∑
i=1

m

Then if f and gi are convex, the partial derivative of L with respect to each xj must be
zero at the optimum.

_____ 18.  For the problem in the previous statement, λigi(x) must be zero at the optimum.

_____ 19.  For the problem in the previous statement, either xj or  
∂L(x,λ)

∂xj
  (or possibly both)

must be zero at the optimum.

_____20.  The limit, as w → 0, of the function (c/w)w  is ∞.

_____21.  lim
x→0

  ln x = - ∞, but lim
x→0

 x ln x = 0

_____22.  If we define the function φ(x) = x ln x, then lim
x→0

 
dφ
dx

   = -∞

_____23.  When the dual problem is solved, the primal variables of a posynomial GP problem
are often computed by exponentiating the Lagrange multipliers of the orthogonality
constraints.

_____24.  The function f(x,y) = xy is a concave function of x and y.

_____25.  If an algorithm is applied to a minimization problem with optimal value zero, and the
objective value is approximately halved at each iteration, then we would say that the
algorithm has a linear rate of convergence.

_____26.  The Hessian matrix of (xtQx + cx) is 2Q.

_____27.  In the QC/LD problem, the objective function is assumed to be quadratic.

_____28.  If fi(x) is linear for i=1,2,...n, then the function F(x) defined by F(x)= max{fi(x):
i=1,2,...n} is a convex function.

_____29. If a posynomial GP objective function continues to decrease as xj → 0 for some primal
variable xj, then the dual problem objective is unbounded.

_____30. If a posynomial GP objective function continues to decrease as xj → +∞ for some
primal variable xj, then the dual problem is infeasible.

_____ 31.  Every posynomial function is convex.

_____ 32.  The dual of a constrained posynomial GP problem has only linear equality and
nonnegativity constraints.
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_____ 33.  If a primal GP constraint is slack, then all the weights of the terms in that constraint
must be zero.

_____ 34.  In the QC/LD problem, the variables are restricted to be integer-valued.

_____ 35.  The gradient of the function f(x) = (xtQx + cx) is Qx + c.

_____ 36.  Solving the QC/LD problem requires a one-dimensional search at each iteration.

_____ 37.  The posynomial constraint gi(x)≤1 has a convex feasible region.

_____ 38.  It is always possible (e.g., by a change of variable) to reformulate a posynomial GP
problem so as to have a convex objective and convex feasible region.

_____ 39.  The objective of the posynomial GP problem, i.e.,

v(δ,λ) = ci

δi

δi∏
i

 λk
λk∏

k

is a concave function of δ and λ.

_____ 40.  In the "Golden Section Search" method, more than one-third of the interval of
uncertainty is eliminated at each iteration (assuming that no function values are equal).

_____ 41.  If all posynomials in a (posynomial) GP problem are condensed into single terms,
then the resulting problem has a feasible region which includes the original feasible
region.

_____ 42. The Hessian matrix of a quadratic function is constant.

_____ 43.  In Wolfe's complementary pivoting algorithm for QP, if a single artificial variable is
used, then the tableau does not require an objective row.

_____ 44.  The gradient projection method computes Lagrange multipliers at each iteration, and
stops when they have the appropriate sign.

_____ 45.   "Quasi-Newton" search methods for unconstrained minimization require the
computation of second partial derivatives.

_____ 46.  Newton's method for unconstrained minimization requires the computation of second
partial derivatives.

_____ 47.  If you guess at the value of some primal GP variable and then fix it at this value, the
dual GP problem becomes more difficult to solve.

_____ 48.  In a "generalized linear programming" problem, the column of coefficients of the
variables must be selected as well as the variables.

_____ 49.  The function eax is convex only  for a≥0.

_____ 50.  The Davidon-Fletcher-Powell (DFP) algorithm requires the computation of partial
derivatives.

_____ 51 .  If a posynomial function is "condensed" into a monomial, the monomial function (if
not equal) is an overestimate of the posynomial function.
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_____ 52 .  Wolfe's method for quadratic programming requires a one-dimensional search at
every iteration.

_____ 53.  If a constrained nonlinear programming problem satisfies a "constraint qualification",
then a point which satisfies the Karush-Kuhn-Tucker conditions must be an optimal
solution.

_____ 54.  A barrier function allows a constraint to be violated, but adds a penalty if the
constraint is violated.

_____ 55.  The GRG algorithm requires the use of a one-dimensional search method.

_____ 56.  The Feasible Directions algorithm requires the use of a one-dimensional search
method.

_____ 57. If a constrained nonlinear programming problem satisfies a "constraint qualification",
then the Karush-Kuhn-Tucker conditions must be satisfied by an optimal solution.

_____ 58.  The function eax is convex for all  values of a.

_____ 59.  In Wolfe's complementary pivoting method for quadratic programming, the
complementary slackness conditions are satisfied after each iteration.

_____ 60 .  The tableau for Wolfe's method for quadratic programming includes columns for
both primal and dual variables.

_____ 61.  The function xa is convex for a ≥ 0.

_____ 62.  If a nonlinear programming problem has only linear constraints, then any point which
satisfies the Karush-Kuhn-Tucker conditions must be optimal.

_____ 63.  The Fletcher-Reeves method is also known as a "Quasi-Newton" method.

_____ 64.   The quadratic interpolation procedure for one-dimensional minimization requires the
computation of derivatives.

_____ 65.  If the GRG algorithm were applied to a LP problem, it would produce, at each
iteration, the same solution as the simplex algorithm for LP.

_____ 66.  A penalty function allows a constraint to be violated, but adds a penalty if the
constraint is violated.

_____ 67.  The Lagrangian dual of a convex quadratic programming problem is a quadratic
programming problem with only nonnegativity constraints on the dual variables.

_____ 68.  Powell's algorithm for unconstrained minimization requires the computation of partial
derivatives.

_____ 69.  The Davidon-Fletcher-Powell method is also known as the "Conjugate Gradient"
method.

_____ 70.  In the QC/LD problem, the objective function is assumed to be convex.
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Below is a list of references concerning Geometric Programming and applications.  Part I lists
papers which explicity use GP, while Part II lists papers whose applications appear to be good
candidates for GP.

Part I:  Selected References to
Geometric Programming Applications

56:271 Spring '97
D. Bricker

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Paul, H. (1982). “An Application of Geometric Programming to Heat Exchanger Design.”
Computers and Industrial Engineering 6(2): 103-114.

Phillips, D. T. and C. S. Beightler (1970). “Optimization in Tool Engineering Using Geometric
Programming.” AIIE Transactions 2(4): 355-360.

Corstjens, M. and P. Doyle (1981). “A Model for Optimizing Retail Space Allocations.”
Management Science 27(7): 822-833.

Balachandran, V. and D. Gensch (1973). Solving the "Marketing Mix" Problem Using Geometric
Programming. Northwestern University.

Dajani, J. S., Y. Hasit, et al. (1977). “Geometric Programming in Sewer Network Design.”
Engineering Optimization 3: 27-35.

Edwards, L. S. (1975). “Optimum Limit State Design of Highway Bridge Superstructures Using
Geometric Programming.” Engineering Optimization 1: 201-212.

Unklesbay, K. and D. L. Creighton (1978). “The Optimization of Multi-pass Machining Process.”
Engineering Optimization 3: 229-238.

Mine, H. and K. Ohno (1970). “Decomposition of Mathematical Programming Problems by
Dynamic Programming and its Application to BLock-Diagonal Geometric Programs.” J.
Jath. Anal. Appl. 32: 370ff.

Yu, C. H., N. C. Dasgupta, et al. (1986). “Optimization of Prestressed Concrete Bridge Girders.”
Engineering Optimization 10(1): 13-24.

Kapur, K. C. (1978). Optimization in Probabilistic Design for Engineering Systems. Second
International Symposium on Large Engineering Systems, Waterloo, Sandford Educational
Press.

Wyman, F. P. (1978). “Use of Geometric Programming in the Design of an Algerian Water
Conveyance System.” Interfaces 8(3): 1-6.

Philipson, R. H. and A. Ravindran (1979). “Application of Mathematical Programming to Metal
Cutting.” Mathematical Programming Study 11: 116-134.
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Hivner, W. H. and R. P. Mehta (1977). “Optimizing Computer Performance with Geometric
Programming.” European Journal of Operational Research 1(2):

Grange, F. E., G. A. Kochenberger, et al. (1992). Optimal Design of Multi-Pass Heat Exchangers
with Geometric Programming.

Woolsey, R. E. D. An Analysis of a Model of the MPS MX Missile System Using Geometric
Programming. Mathematics Dept., Colorado School of Mines.

Gopalakrishnan, B. and F. Al-Khayyal (1991). “Machine Parameter Selection for Turning based
on Geometric Programming.” International Journal of Production Research 29: 1897-
1908.

Smeers, Y. and D. Tyteca (1984). “A Geometric Programming Model for the Optimal Design of
Wastewater Treatment Plants.” Operations Research 32(2): 314-342.

a.  Chose one reference from Part I of the list of GP applications.

b.  Briefly summarize the application problem.

c.  Write the mathematical model.

d.  Identify the # of (primal) variables, # of constraints, total # of terms.

e.  State whether posynomial or signomial in nature.

f.  Describe the method used by the author(s) of the paper.

g.  If sample data is given for a sample problem, or if you can guess at reasonable data, solve
the GP problem.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Part II:  Selected References to Potential
Geometric Programming Applications

Dinkel, J. J. and G. A. Kochenberger (1974). “On "A Cofferdam Design Optimization".”
Mathematical Programming 6(1): 114-116.

Neghabat, F. and R. M. Stark (1972). “A Cofferdam Design Optimization".” Mathematical
Programming 3: 263-275.

Feiring, B. R. (1990). “An Efficient Procedure for the N-city Traveling Salesman Problem.”
Mathematical and Computer Modelling 13(3): 95-98.

Terry, W. R. and K. W. Cutright (1986). Computer Aided Design of a Broaching Process.
Computers and Industrial Engineering. 11: 576-580.

Ulusoy, A. G. and D. M. Miller (1979). Optimal Design of Pipeline Networks Carrying
Homogeneous Coal Slurry. Mathematical Programming Study. North-Holland Publishing
Company. 85-107.

56:271 Final Quiz- 1994 page 6



Name ___________________________

Cowton, C. J. and A. Wirth (1993). “On the Economics of Cutting Tools.” International Journal
of Production Research 31(10): 2441-2446.

Quesada, I. and I. E. Grossmann (1992). A Global Optimization Algorithm for Heat Exchanger
Networks. Engineering Design Research Center, Carnegie-Mellon University.

a.  Chose one reference from Part II of the list of potential GP applications.

b.  Briefly summarize the application problem.

c.  Write the mathematical model given by the author(s).

d.  If possible, reformulate the model as a GP (either posynomial or signomial) problem.

e.  Identify the # of (primal) variables, # of constraints, total # of terms.

f.  Describe the method used by the author(s) of the paper.

g.  If sample data is given for a sample problem, or if you can guess at reasonable data, solve
the GP problem.
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