\qquad


``` 56：271 \(\mathcal{N}\) onlinear Programming Final Exam（Take－fome）－Thursday，May 15， 1997
出世出出世出世出出世出世
```


Section A

Indicate whether each statement is true（＋）or false（0）．If false，briefly state why or give a counterexample．
\qquad 1．A barrier function adds a penalty to the objective when the solution approaches a boundary of the feasible region．
\qquad 2．The number of＂dependent＂variables of the GRG algorithm is equal to the number of equality constraints．
\qquad 3．The cubic interpolation procedure for one－dimensional minimization requires the computation of second derivatives．
\qquad 4．The function x^{a} is convex for $x>0$ ．
\qquad 5．The feasible directions algorithm computes a search direction by solving an LP．
\qquad 6．The Fibonacci method for one－dimensional minimization requires the computation of derivatives．
\qquad 7．If all posynomials in a（posynomial）GP problem are condensed into single terms， then it is always possible to rewrite the resulting problem as an LP problem．
\qquad 8．A linear function is neither convex nor concave．
\qquad 9．The Gradient Projection method always follows the boundary of the feasible region， and never enters the interior．
\qquad 10．The logarithm of the dual GP objective $\mathrm{v}(\delta, \lambda)$ above is a concave function of δ and λ ．
\qquad 11．The logarithm of the dual GP objective $\mathrm{v}(\delta, \lambda)$ above is not a concave function of both δ and λ ，but becomes so if you eliminate λ_{k} using $\lambda_{\mathrm{k}}=\sum_{\mathrm{i} \in[\mathrm{k}]} \delta_{\mathrm{i}}$ ．
\qquad 12．A locally optimal solution for a signomial geometric programming problem must be globally optimal．
\qquad 13．The dual（＂pseudo－dual＂）of a signomial GP problem may have multiple local maxima，but its global maximum will have the same objective value as the global minimum of the primal signomial GP．
\qquad 14．Penalty functions may be used for both equality and inequality constraints，but barrier functions may be used only for inequality constraints．
\qquad
\qquad 16. If the Lagrangian function $L(x, \lambda)$ has a saddlepoint $\left(x^{0}, \lambda^{0}\right)$, then there is zero duality gap between primal and dual optimal solutions.
\qquad 17. Consider the problem: $\min f(x)$ subject to $g_{i}(x) \leq 0, i=1,2 \ldots m, x \geq 0$ (where g_{i} satisfy some constraint qualification) and its Lagrangian function

$$
\mathrm{L}(\mathrm{x}, \lambda)=\mathrm{f}(\mathrm{x})+\sum_{\mathrm{i}=1}^{\mathrm{m}} \lambda_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}(\mathrm{x})
$$

Then if f and g_{i} are convex, the partial derivative of L with respect to each x_{j} must be zero at the optimum.
\qquad 18. For the problem in the previous statement, $\boldsymbol{\lambda}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}(\mathrm{x})$ must be zero at the optimum.
\qquad 19. For the problem in the previous statement, either x_{j} or $\frac{\partial L(x, \lambda)}{\partial x_{j}}$ (or possibly both) must be zero at the optimum.
\qquad 20. The limit, as $w \rightarrow 0$, of the function $(\mathrm{c} / \mathrm{w})^{\mathrm{w}}$ is ∞.

- 2

21. $\lim _{x \rightarrow 0} \ln x=-\infty$, but $\lim _{x \rightarrow 0} x \ln x=0$
22. If we define the function $\phi(x)=x \ln x$, then $\lim _{x \rightarrow 0} \frac{d \phi}{d x}=-\infty$
23. When the dual problem is solved, the primal variables of a posynomial GP problem are often computed by exponentiating the Lagrange multipliers of the orthogonality constraints.
24. The function $f(x, y)=x y$ is a concave function of x and y.
\qquad 25. If an algorithm is applied to a minimization problem with optimal value zero, and the objective value is approximately halved at each iteration, then we would say that the algorithm has a linear rate of convergence.
___26. The Hessian matrix of $\left(x^{t} Q x+c x\right)$ is $2 Q$.
__27. In the $\mathrm{QC} / \mathrm{LD}$ problem, the objective function is assumed to be quadratic.
____28. If $\mathrm{f}_{\mathrm{i}}(\mathrm{x})$ is linear for $\mathrm{i}=1,2, \ldots \mathrm{n}$, then the function $\mathrm{F}(\mathrm{x})$ defined by $\mathrm{F}(\mathrm{x})=\max \left\{\mathrm{f}_{\mathrm{i}}(\mathrm{x})\right.$: $\mathrm{i}=1,2, \ldots \mathrm{n}\}$ is a convex function.
\qquad 29. If a posynomial GP objective function continues to decrease as $\mathrm{x}_{\mathrm{j}} \rightarrow 0$ for some primal variable x_{j}, then the dual problem objective is unbounded.
\qquad 30. If a posynomial GP objective function continues to decrease as $\mathrm{x}_{\mathrm{j}} \rightarrow+\infty$ for some primal variable x_{j}, then the dual problem is infeasible.
\qquad 31. Every posynomial function is convex.
\qquad 32. The dual of a constrained posynomial GP problem has only linear equality and nonnegativity constraints.
\qquad
\qquad 33. If a primal GP constraint is slack, then all the weights of the terms in that constraint must be zero.
\qquad 34. In the QC/LD problem, the variables are restricted to be integer-valued.
\qquad 35. The gradient of the function $f(x)=\left(x^{t} Q x+c x\right)$ is $Q x+c$.
\qquad 36. Solving the QC/LD problem requires a one-dimensional search at each iteration.
\qquad 37. The posynomial constraint $\mathrm{g}_{\mathrm{i}}(\mathrm{x}) \leq 1$ has a convex feasible region.
\qquad 38. It is always possible (e.g., by a change of variable) to reformulate a posynomial GP problem so as to have a convex objective and convex feasible region.
\qquad 39. The objective of the posynomial GP problem, i.e.,

$$
\mathrm{v}(\delta, \lambda)=\prod_{\mathrm{i}}\left(\frac{\mathrm{c}_{\mathrm{i}}}{\delta_{\mathrm{i}}}\right)^{\delta_{\mathrm{i}}} \prod_{\mathrm{k}} \lambda_{\mathrm{k}}^{\lambda_{\mathrm{k}}}
$$

is a concave function of δ and λ.
\qquad 40. In the "Golden Section Search" method, more than one-third of the interval of uncertainty is eliminated at each iteration (assuming that no function values are equal).
\qquad 41. If all posynomials in a (posynomial) GP problem are condensed into single terms, then the resulting problem has a feasible region which includes the original feasible region.
\qquad 42. The Hessian matrix of a quadratic function is constant.
\qquad 43. In Wolfe's complementary pivoting algorithm for QP , if a single artificial variable is used, then the tableau does not require an objective row.
\qquad 44. The gradient projection method computes Lagrange multipliers at each iteration, and stops when they have the appropriate sign.
\qquad 45. "Quasi-Newton" search methods for unconstrained minimization require the computation of second partial derivatives.
\qquad 46. Newton's method for unconstrained minimization requires the computation of second partial derivatives.
\qquad 47. If you guess at the value of some primal GP variable and then fix it at this value, the dual GP problem becomes more difficult to solve.
\qquad 48. In a "generalized linear programming" problem, the column of coefficients of the variables must be selected as well as the variables.
\qquad 49. The function e^{ax} is convex only for $\mathrm{a} \geq 0$.
\qquad 50. The Davidon-Fletcher-Powell (DFP) algorithm requires the computation of partial derivatives.
\qquad 51. If a posynomial function is "condensed" into a monomial, the monomial function (if not equal) is an overestimate of the posynomial function.
\qquad
\qquad 52. Wolfe's method for quadratic programming requires a one-dimensional search at every iteration.
\qquad 53. If a constrained nonlinear programming problem satisfies a "constraint qualification", then a point which satisfies the Karush-Kuhn-Tucker conditions must be an optimal solution.
\qquad 54. A barrier function allows a constraint to be violated, but adds a penalty if the constraint is violated.
\qquad 55. The GRG algorithm requires the use of a one-dimensional search method.
\qquad 56. The Feasible Directions algorithm requires the use of a one-dimensional search method.
\qquad 57. If a constrained nonlinear programming problem satisfies a "constraint qualification", then the Karush-Kuhn-Tucker conditions must be satisfied by an optimal solution.
\qquad 58. The function e^{ax} is convex for all values of a.
\qquad 59. In Wolfe's complementary pivoting method for quadratic programming, the complementary slackness conditions are satisfied after each iteration.
\qquad 60. The tableau for Wolfe's method for quadratic programming includes columns for both primal and dual variables.
\qquad 61. The function x^{2} is convex for $\mathrm{a} \geq 0$.
\qquad 62. If a nonlinear programming problem has only linear constraints, then any point which satisfies the Karush-Kuhn-Tucker conditions must be optimal.
\qquad 63. The Fletcher-Reeves method is also known as a "Quasi-Newton" method.
\qquad 64. The quadratic interpolation procedure for one-dimensional minimization requires the computation of derivatives.
\qquad 65. If the GRG algorithm were applied to a LP problem, it would produce, at each iteration, the same solution as the simplex algorithm for LP.
\qquad 66. A penalty function allows a constraint to be violated, but adds a penalty if the constraint is violated.
\qquad 67. The Lagrangian dual of a convex quadratic programming problem is a quadratic programming problem with only nonnegativity constraints on the dual variables.
\qquad 68. Powell's algorithm for unconstrained minimization requires the computation of partial derivatives.
\qquad 69. The Davidon-Fletcher-Powell method is also known as the "Conjugate Gradient" method.
\qquad 70. In the QC/LD problem, the objective function is assumed to be convex.
\qquad

Section B

Below is a list of references concerning Geometric Programming and applications. Part I lists papers which explicity use GP, while Part II lists papers whose applications appear to be good candidates for GP.

Part I: Selected References to Geometric Programming Applications

56:271 Spring '97
D. Bricker

Paul, H. (1982). "An Application of Geometric Programming to Heat Exchanger Design."
Computers and Industrial Engineering 6(2): 103-114.
Phillips, D. T. and C. S. Beightler (1970). "Optimization in Tool Engineering Using Geometric Programming." AIIE Transactions 2(4): 355-360.

Corstjens, M. and P. Doyle (1981). "A Model for Optimizing Retail Space Allocations." Management Science 27(7): 822-833.

Balachandran, V. and D. Gensch (1973). Solving the "Marketing Mix" Problem Using Geometric Programming. Northwestern University.

Dajani, J. S., Y. Hasit, et al. (1977). "Geometric Programming in Sewer Network Design." Engineering Optimization 3: 27-35.

Edwards, L. S. (1975). "Optimum Limit State Design of Highway Bridge Superstructures Using Geometric Programming." Engineering Optimization 1: 201-212.

Unklesbay, K. and D. L. Creighton (1978). "The Optimization of Multi-pass Machining Process." Engineering Optimization 3: 229-238.

Mine, H. and K. Ohno (1970). "Decomposition of Mathematical Programming Problems by Dynamic Programming and its Application to BLock-Diagonal Geometric Programs." J. Jath. Anal. Appl. 32: 370ff.

Yu, C. H., N. C. Dasgupta, et al. (1986). "Optimization of Prestressed Concrete Bridge Girders." Engineering Optimization $10(1)$: 13-24.

Kapur, K. C. (1978). Optimization in Probabilistic Design for Engineering Systems. Second International Symposium on Large Engineering Systems, Waterloo, Sandford Educational Press.

Wyman, F. P. (1978). "Use of Geometric Programming in the Design of an Algerian Water Conveyance System." Interfaces 8(3): 1-6.

Philipson, R. H. and A. Ravindran (1979). "Application of Mathematical Programming to Metal Cutting." Mathematical Programming Study 11: 116-134.
\qquad
Hivner, W. H. and R. P. Mehta (1977). "Optimizing Computer Performance with Geometric Programming." European Journal of Operational Research 1(2):

Grange, F. E., G. A. Kochenberger, et al. (1992). Optimal Design of Multi-Pass Heat Exchangers with Geometric Programming.

Woolsey, R. E. D. An Analysis of a Model of the MPS MX Missile System Using Geometric Programming. Mathematics Dept., Colorado School of Mines.

Gopalakrishnan, B. and F. Al-Khayyal (1991). "Machine Parameter Selection for Turning based on Geometric Programming." International Journal of Production Research 29: 18971908.

Smeers, Y. and D. Tyteca (1984). "A Geometric Programming Model for the Optimal Design of Wastewater Treatment Plants." Operations Research 32(2): 314-342.

Questions:

a. Chose one reference from Part I of the list of GP applications.
b. Briefly summarize the application problem.
c. Write the mathematical model.
d. Identify the \# of (primal) variables, \# of constraints, total \# of terms.
e. State whether posynomial or signomial in nature.
f. Describe the method used by the author(s) of the paper.
g. If sample data is given for a sample problem, or if you can guess at reasonable data, solve the GP problem.

Part II: Selected References to Potential Geometric Programming Applications

Dinkel, J. J. and G. A. Kochenberger (1974). "On "A Cofferdam Design Optimization"." Mathematical Programming 6(1): 114-116.

Neghabat, F. and R. M. Stark (1972). "A Cofferdam Design Optimization"." Mathematical Programming 3: 263-275.

Feiring, B. R. (1990). "An Efficient Procedure for the N-city Traveling Salesman Problem." Mathematical and Computer Modelling 13(3): 95-98.

Terry, W. R. and K. W. Cutright (1986). Computer Aided Design of a Broaching Process. Computers and Industrial Engineering. 11: 576-580.

Ulusoy, A. G. and D. M. Miller (1979). Optimal Design of Pipeline Networks Carrying Homogeneous Coal Slurry. Mathematical Programming Study. North-Holland Publishing Company. 85-107.
\qquad
Cowton, C. J. and A. Wirth (1993). "On the Economics of Cutting Tools." International Journal of Production Research 31(10): 2441-2446.

Quesada, I. and I. E. Grossmann (1992). A Global Optimization Algorithm for Heat Exchanger Networks. Engineering Design Research Center, Carnegie-Mellon University.

Questions:

a. Chose one reference from Part II of the list of potential GP applications.
b. Briefly summarize the application problem.
c. Write the mathematical model given by the author(s).
d. If possible, reformulate the model as a GP (either posynomial or signomial) problem.
e. Identify the \# of (primal) variables, \# of constraints, total \# of terms.
f. Describe the method used by the author(s) of the paper.
g. If sample data is given for a sample problem, or if you can guess at reasonable data, solve the GP problem.

