56:271 Nonlinear Programming
Final Examination -- December 16, 1988
Select an§lX of the EIGHT problems:
(1.) Unconstrained Search Methods: Consider the problem Minimize $f(x, y)$, where $f\left(x, y^{2} y^{2} x-8 x-2 x y\right.$
a. Test whether $f(x, y)$ is convex, concave, both, or neither.
b. If we start with the initial "guessl", $=1$, and use theepest descent method, in which direction will we first search?
 and y at the start of iteration \#2?
d. If we were to use \mathbb{E} hetcher-Reeves (i.e. "conjugate gradient") method, what would be the search direction in iteration \#1? in iteration \#2?
e. If we were to usewton's method, what would be the search direction in iterat \#1? What would be the stepsize used in this method?
(2.) Quadratic programming: Consider the problem

$$
\begin{aligned}
& \text { Minimize } 1.3 x+x y+0.5^{2} y-30 x-14 y \\
& \text { subject to } x+y \geq 3 \\
& 2 x-y \geq 4 \\
& 0 \leq x, \quad 0 \leq y \leq 2
\end{aligned}
$$

a. Write the Kuhn-Tucker conditions for this problem, using explicit Lagrange multipliers for the non-negativity constraints.
b. Are the Kuhn-Tucker conditions [(i) necessary, (ii) sufficient, (iii) both, or neither] for optimality?

The tableau for solution of this problem by Wolfe's method is:
Tableau (before adding artificial variable)

1	2	3	-4	5	6	7	8	-9	0	\mathbf{b}
-	1	0	0	0	1	0	0	0	0	3
2	-1	0	0	0	0	1	0	0	0	4
0	1	0	0	0	0	0	1	0	0	2
3	1	1	2	0	0	0	0	-1	0	30
1	1	1	-1	1	0	0	0	0	-1	14

c. How is this tableau related to the Kuhn-Tucker conditions you stated in part

TABLEAU

(after pivoting slack and surplus variables into basis)

1	2	3	4	5	6	7	8	9	0	b
--1	-2	$-\frac{1}{2}$	-1	-	-					
1	1	0	0	0	1	0	0	0	0	3
2	-1	0	0	0	0	1	0	0	0	4
0	1	0	0	0	0	0	1	0	0	2
-3	-1	-1	-2	0	0	0	0	1	0	-30
-1	-1	-1	1	-1	0	0	0	0	1	-14

An artificial variable is now inserted:

TABLEAU with artificial variable included

d. Explain how the coefficients of the artificial variable are determined.

The artificial variable is next entered into the basis:

1	21	3		51			81				
	11	0			1		-1--				3
2	11	0	0	01	0	1	010	0	1	01	4
0	1)	0	0	01	0	0	1) 0			01	2
3	11	1	2	01	0	0	ol^{-1}				30
2	01	0	3				O^{-1}				16

e. Explain how the pivot row was selected.

A pivot is next performed in row 2 \& column 1:

TABLEAU

		3		51	5		8						b
	1.51	0	0		1		0		0	01			1
1	-0.51	0	0	01	0	0.5	0	I	0	01	0		2
0	1 \|	0	0	01	0	0	1		0	01	0		2
0	2.51	1	2	01	0	-1.5	0	$1-$	1	01	1		24
0	1 \|	0		11		-1	0						12

f. Explain why (row 2, column 1) was selected for the pivot.

The next pivot is performed in row 5 \& column 4:

TABLEAU

1	2	34	5	6	7	8	9	0	al b
									-
0	1.5 \|	00	$0 \quad 1$	1	-0.5	0	10	0 I	$0 \mid 1$
1	-0.5 \|	00	0 I	0	0.5	0	10	0	012
0	1 \|	00	0 -	0	0	1	10	0	012
0	1.83333 I	10	0.6666671	0	-0.833333	0	1-0.333333	-0.6666671	1\| 16
0	0.3333331	01	-0.3333331	0	-0.333333	0	1-0.333333	0.3333331	014

g. Explain why (row 5 , column 4) was selected for the pivot.

After additional pivots, the tableau below was found:

h. What are the optimal values for the original variables? for the Lagrange multipliers which you defined in (a)?
(3.) Lagrangian Duality: Consider the problem

Minimize ${ }^{2} x+y^{2} \quad$ subject to $x+y=1$
(note: no nonnegativity restrictions!)
a. Sketch a very rough graph and indicate the optimal so, $\mathrm{y}^{*} \mathrm{t}$ i.on (x
b. Write the Kuhn-Tucker conditions for optimality.
c. Check whether the optimum indicated in (a) satisfies the Kuhn-Tucker condi
d. State the objective function of the Lagrangian dual problem (as a function o Lagrange multiplier l alone.) Is this function convex, concave, both, or ne
e. State the Lagrangian dual problem.
f. Solve the Lagrangian dual problem.
g. Is there a duality gap for this problem?
(4.) Linearly-constrained minimization: Consider the problem

Minimize $3^{2} x+2 x y+2 y-30 x-14 y$
subject to $x+y<3$
$2 x-y \geq 4$
$0 \leq x, \quad 0 \leq y \leq 2$
This problem was solved, using the GRG algorithm, which gave the following output
Generalized Reduced Gradient Algorithm

Please enter a feasible starting solution
(Be sure to include any slack/surplus variables you may have included!)
ㅁ:
0034
$h(x)=00$
Please enter index set of 2 DEPEMDENT variables
ㅁ:
34

Iteration 1

```
x = 0 0 3 4
F}(\textrm{x})=
    Dependent Index Set: 3 4
    Independent Index Set: 1 2
h(x) = 0 0
Gradient = -30 -14 0 0
Hegative of Reduced Gradient = 3014
Search Direction = 30 14 -44 - 46
(Hormalized Search Direction = 0.652174 0.304348 -0.956522 -1)
Max Step Size = 3.13636
Optimal Step Size = 3.13636
    x = 2.04545 0.954545 0 0.863636
    h(x)=0 0
3 is replaced by 1 in Dependent Variable Set.
    h(x)=0 0
                                    Iteration 2
x = 2.04545 0.954545 0 0.863636
F(x)= -57.3595
    Dependent Index Set: 1 4
    Independent Index Set: 3 2
h(x) = 00
Gradient = -15.8182 -8 0 0
Hegative of Reduced Gradient = -15.8182 -7.81818
Search Direction = 7.81818 -7.81818 0 233.4545
(Normalized Search Direction = 0.333333 -0.333333 0-1)
Max Step Size = 0.863636
Optimal Step Size = 0.863636
    x = 2.33333 0.666667 0 0
    h(x)=0 0
4 is replaced by }2\mathrm{ in Dependent Variable Set.
    h(x)=0 0
                                    Iteration 3
x = 2.33333 0.666667 0 0
F(x)= -59.4444
    Dependent Index Set: 1 2
    Independent Index Set: 3 4
h(x) = 0 0
Gradient = -14.6667 -8 0 0
Hegative of Reduced Gradient = - 10.2222 - 2.222222
*** GRG HAS COHVERGED ***
                                    |---------------------------------
                                    | Generalized Redwced Gradient
                                    Solution
x = 2.33333 0.666667 0 0
F(x) = -59.4444
VF(x) = -14.6607 -8 0 0
h(x) = 00
```

a. Why was the partition of variables into "dependent" and "independent" vari changed at the end of iteration \#1?
b. At iteration \#2, show how, bfnlaes been computed, the "reduced gradient" is computed.
c. Show how the search direction is computed in iteration \#2, once the reduced gradient has been computed.
d. At iteration \#3, why does the algorithm terminate?
(5.) Gradient Projection Algorithm: Consider again the problem of \#4:

$$
\begin{aligned}
& \text { Minimize } 3^{2} x+2 x y+2 y-30 x-14 y \\
& \text { subject to } x+y \geq 3 \\
& 2 x-y \geq 4 \\
& 0 \leq x, \quad 0 \leq y \leq 2
\end{aligned}
$$

This problem was also solved using the Gradient Projection Algorithm, which gave output below. (Note that the upper bound on y is the third inequality constraint, fourth \& fifth inequalities of \pm ape derived from the non-negativity constraints.)

Problem ID: Sample Froblem

12/15/88 23:22
Please enter a feasible starting point for the search
ロ:
00
$\mathrm{x}=00$
$F(X)=0$
Constraint Partition: Tight: $45 \quad$ Slack: 123
Matrix M =

$$
\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}
$$

Projection Matrix $P=$
00
00
Gradient $\nabla f(x)=-30-14$
Search Direction $=0$
Lagrange Multipliers $=-30-14$
$\star \star \star \star$ Release Tight Constraint 2
Constraint Partition: Tight: 4
Slack: 1235
a. Explain how the makixs determined.
b. Explain the purpose of the projection Pmalt bine, and its computation.
c. What is meant by "releasing" a tight constraint? Why was a tight constraint "released" in this case?

The output continues:

```
X= 0 0
F(X) = 0
Constraint Partition: Tight: 4
Matrix M =
Frojection Matrix P =
    0
    0}
Gradient }\mp@subsup{\nabla}{f}{\prime}(x)=-30-1
Search Direction = 0 14
Maximum step size = 0.142857
Optimal step size = 0.142857
```

d. Show how is computed.
e. Explain how the search direction above is computed.
f. Under what conditions will this algorithm terminate?
(6.) Dynamic programming with quadratic criterial \& linear dynamics: Consider the problem

$$
\begin{aligned}
& \text { Minimize } \left.6^{2}+2 x^{2}+x_{0}\right)+\left(2 x^{2}-0.5 x_{1}+2 y_{1}^{2}+x_{1}\right) \\
& +\left(2 x^{2}-0.5 y_{2} y_{2}+y_{2}^{2}+x_{2}+y_{2}\right)+\left(x_{3}^{2}+y_{3}^{2}+x_{3}+y_{3}\right)+x_{4}^{2} \\
& \text { subject to } \\
& x_{t+1}=0.9 x+y t-1, t=0,1,2,3 \\
& x_{0}=10(\text { initial state })
\end{aligned}
$$

The problem was solved by dynamic programming, with the results below: Cost Data

where $A[i]=$ coefficient of $Y[i] \star 2$
$\mathrm{D}[\mathrm{i}]=$ coefficient of $\mathrm{X}[i]$
$B[i]=$ coefficient of $X[i] \times Y[i] \quad E[i]=$ coefficient of $Y[i]$
$C[i]=$ coefficient of $Y[i] \star 2 \quad F[i]=$ constant
Cost of final stage: $1 \times \mathrm{K}[\mathrm{H}] \star 2+0 \times \mathrm{K}[\mathrm{H}]+0$

Transition data

i G H K
00.91 -1
10.91^{-1}
$\begin{array}{lll}20.9 & 1\end{array}$
30.91^{-1}
Given' the above data, the following vectors were computed:
Computed Arrays
Do you want the output routed to the printer? n

P	0	R	S	T
01.99425	-1.82305	5.40452	-0.55236	0.674407
13.17777	-1.76507	3.64569	-0.464765	0.449064
22.7101	-0.932848	2.14501	-0.42183	0.25
31.405	-0.35	0.875	-0.45	0
41	0	0	0.78418	1

Then, using $g_{0} \neq 10$, the following optimum was computed:

$X[i]=$ state variable, and $Y[i]=$ decision variable, at stage i
a. Compute the optimal cost, based upon the computed arrays (instead of substi the optimal solution into the original objective function!)
b. What is the terminal stat)ef(ox the optimal solution?
c. If the initial state were 9, rather than 10, compute the optimal cost if possib possible, explain how one would use the APL code to compute it.

Suppose that the optimal solution were incorrectly implemented, becayse-由 value y were mistakenly used for the initial decision.
d. What value of the state varịbweuld result?
e. What is now the best possible valup fare ydecision variable at the next stage?
f. What is the minimum cost which can now be attained?
(7.) Posynomial Geometric Programming: Consider the problem

$$
\begin{array}{ll}
\text { Minimize } & 1 /\left(3 x^{2}\right)+2 z \\
\text { subject to } & x^{3}+y^{2}+z \leq 1 \\
& x>0, y>0, z>0
\end{array}
$$

a. Write the dual of this geometric programming problem.
b. What is its "degree of difficulty"?
c. Write the separable, exponential form of the original primal problem. Are t Kuhn-Tucker conditions necessary for this problem? Are they sufficient?

The results of the APL workspace GPLIB for this problem appears below. (Note: algorithm used, the usual "weigjhtơruterm j in posynomial k is founglobj $\lambda_{k} M$

Primal Solution: Final Exam '88

Objective function: 21.1472

i	X[i]
1	0.465306
2	0.54774
3	0.599238

Constraints

\mathbf{k}	\mathbf{P}	Lambda
-	1	3.08779

Dual Solution: Final Exam '88
Weights of terme (ρ):

$19.4330 \mathrm{E}^{-1} 5.6704 \mathrm{E}^{-} 2$
$21.0074 \mathrm{E}^{-1} 3.0002 \mathrm{E}^{-1} 5.9924 \mathrm{E}^{-1}$

Lagrange multipliers of primal constraints: 3.08779
Objective function:21.1384
Duality Gap: $0.00876489=0.0414471 \%$
d. What are the optimal values of $x, y, \& z$?
e. At the optimum, what fraction of the objective function is due to the first te
f. Given the dual variables appearing at the final iteration, together with the objective value, write the equations which would be solved to find x, y, and z.
g. Suppose that the cost coefficient of the second term were to increase by 1% to 2.02). Estimate the increase in the optimal cost. (Is this an under-or over-e of the increase?)
(8.) Signomial Programming: Consider the problem

$$
\begin{aligned}
& \text { Minimize } 2 z^{4}-5 \vec{z} \\
& \text { subject to } \\
& \qquad \begin{array}{l}
5 x^{2} / y^{2} \leq 3 z / y \quad-2 \\
x>0, y>0, z>0
\end{array}
\end{aligned}
$$

a. Formulate this as a standard signomial programming problem.
b. Write the dual of this problem. What is its "degree of difficulty"?
c. Solve the dual by an appropriate method.
d. Find the optimal primal solution.

